$$
22402 / B
$$

A S T R O N O M Y

EXPLAINEDUPON
Sir ISAAC NEWTON's Principles,
And made-eafy to thofe who have not fucied
$M A \mathcal{T} H E M A \subset S$ to which are added,

A PLAIN METHOD of finding the
Distances of all the Planets from the Sun, bythe
Transit of Venus over the Sun's Disc, in the Year 1,61.
An Account of Mr. Horrox's Obfervation of the Transit of Venus in the Year 16 6_{3} :

$$
\text { A N } \mathrm{D},
$$

Of the DISTANCES of all the PLANETS from the SUN, 2s deduced from Observations of the Transit in the Year 176 r .

By JAMES FERGUSON, F.R.S.

He b. xi. 3. The Worlds suere framed by the Word of Cou.
Jor, xxvi. 7. He bangith the Eartb upon notiving.
-13. By bis Spirit bo bath garnijbad tioc H:avias.
THENINTHEDITION.

LONDON:

printed for T. Longman, B. Lahk, J. Johnson, G. G. J. \& J. Robinsoin, T. Cadell, H. Murbay, R. Baldwin, T.Vernor, IV. Golusmith, F. \& C. Rivington, W. Lownines, Scatcifrid \& Wiatarer, W. EENT, and J. Evavs.

M DCC XCIV.
20544

TO

THE RIGHT HONOURABLE

GEORGE Earl of Macclesfield,

Viscount PARKER of Ewelme in Oxfordshire, A N D
Baron of Macclesfield in Cheshire, PRESIDENT OF THE ROYAL SOCIETY OF LONDON, Member of the Royal Acadimy of Sciences at Paris, OF THE
IMPERIAL ACADEMY OF SCIENCES AT PETERSBURGH, AND ONE OF THE

TRUSTEES OF THE BRITISH MUSEUM;
DISTINGUISHED
by his generous zeal for promoting
EVERT BRANCH of USEFUL KNowledGe;

THIS
TREATISE of ASTRONOMY I S I N S CRIBED,

WITH THE MOST PROFOUND RESPECT, BY HIS LORDSHIP's
most obliged and MOST HUMBLESTRVANT,

JAMES FERGUSON.

Books publifoced by the fame Autbor.

I. A N Eafy Introduction to Astronomy, for young Gentlemen and Ladies: Defcribing the Figure, Motions, and Dimenfions of the Earth; the different Seafons; Gravity and Light; the Sular Syftem ; the Tranfit of Venus, and its Ule in Aftronomy; the Moon's Motion and Phafes; the Eclipfes of the Sun and Moon; the Caufe of the Ebbing and Flowing of the Sea, \&c. Illuftrated with Plates. Fourth Edition, 8vo. 5s.
2. Lectures on Select Subjects in Mechanics, HydroAtatics, Hydraulics, Preumatics, and Optics: With the Ufe of the Globes, the Art of Dialing, and the Calculation of the Mean Times of New and Full Moons and Eclipfes. Illuffrated with Plates. Eighth Edition, 8vo. 7s. 6d.
3. Tables and Tracts relative to feveral Arts and Sciences. 8vo. 5 s.
4. An Introduction to Electricity, in fix Sections: 1. Of Elefricity in general ; 2. A Defcription of the Electrical Machine; 3. A Defcription of the Apparatus (belonging to the Machine) for making Fxperiments; 4. How to know if the Machine be in good Order for performing the Experiments, and to put it in Order if it be not; 5. How to make the Experiments, and to preferve Buildings from Damage by Lightning; 6. Medical Electricity. Illuftrated, with Mates. Third Edition, 8vo. 5s.
5. Select Mechanical Exercises, fhewing how to conftruct different Clocks, Orreries, and Sun Dials, on plain and eafy Principles: With Several Mifcellaneous Arlicles and Tables. Illuftrated with Plates. To which is prefixed, a fhort Account of the Lite of the Author. Second Edition, 8\%o. 5 s.
6. The Art of Drawing in Perspective made ealy to thofe who have no previeus K nowleJge of the Mathematics. Illuftrated with Plates. 'Second Edition, 8vo. 5s.

T H E

C O N TENTS.

CHAPTERI.

OF Afronomy in general
C H A P TER II.
Abrief Defcription of the Solar System
C H A P TER III.
T'be Copernican System demonftrated to be true 44

CHAPTER IV.

The Pbenomena of the Heavens as seen from different Parts of the Eartb - - 5^{6} CHAPTERV.

The Pbenomena of the Heavens as feen from different Parts of the Solar Syftemz

CHAPTER VI.

The Prolemean Sy/tem refuted. The Motions and Pbajes of Mercury and Venus explained - 70

CHAPTER VII.

The phyjical Caufes of the Motions of the Planets. I be Eccentricities of their Orbits. The Times in which the Aetion of Gravity would bring them to the Sun. Archimedes's ideal Problem for moving the Earth. The World not eternal

CONTENTS.

C H A P T ER VIII.

Of Light. Its proportional Quantities on the different Planets. Its Refractions in Water and Air. The Atmopphere; its Weight and Properties. The borizontal Moon

CHAPTER IX.

The Method of funding the Difances of the Sun, Moon, and Planets - - 102

C H A P TER X.

The Circles of the Globe defcribed. The different lengtbs of Days and Nights, and the viciffitudes of Seajons, explained. The explanation of the Pbenomena of Saturn's Ring concluded

CHAPTER XI.

The Metbod of funding the Longitude by the Eclipfes of Tupiter's Satellites: The amazing velocity of Light demonftrated by thefe Eclipfes

CHAPTERXII.
Of Solar and Sydereal Time
CHAPTER XIII.
Of the Equation of Time
C H A P TER XIV.
Of the Preceffion of the Equinoxes
C H A P T ER XV.
The Moon's Surface mountainous: Her Pbafes defcribid: Iter Path, and the Patbs of Fupiter's Mocits

CONTENTS.

Moons delineated: The proportions of the Diameters of their Orbits, and thofe of Saturn's Moons to each other; and to the Diameter of the Sun

CHAPTER XVI.

The Phenomena of the Harveft-Moon explained by a common Globe: The Years in which the HarveftMoons are leaft and moft beneficial from 1751 to 1861. The long Duration of Moon-light at the Poles in Winter - - 203

CHAPTER XVII.

Of the Ebbing and Floweing of the Sea - 219
C H A P T E R XVIII.
Of Eclipfes: Their Number and Periods. A large Catalogue of Ancient and Modern Eclipfes

C H A P TER XIX.

Shewing the Principles on which the following $A j$ tronomical Tables are conftruEted, and the Metbod of calculating the Times of Nere and Full Moons and Eclipfes by them

C HAPTER XX.

Of the fixed Stars

CHAPTER XXI.

Of the Divifion of Time. A perpetual Table of New Moons: The Times of the Birth and Death of Christ. A Table of remarkable Eras or Events
C H A P T E R XXII.

A Defoription of the Aftronomical Machinery Jerving to explain and illuftrate the foregoing Parl of this Treatife

CONTENTS.

CHAPTER XXIII.

The Method of finding the Dittances of the Planers from the Sun

433
Art. I. Concerning Parallaxes, and their UJe in general

435
Art. II. Sberwing boro to find the horizontal Parallax of Venus by Objervation, and from thence by Analogy, the Parallax and Diftance of the Sun, and of all the Planets from bim - 440
Art III. Containing Doctor Halley's Differtation on the method of finding the Sun's Parallax and Difance from the Eartb, by the Trangit of Venus over the Sun's Dijc, June the 6th, 176 r . Tranfated from the Latin in Motte's Abridgment of the Pbilofophical Tranfactions, Vol. I. page 243; with additional Notes - - 450
Art. IV. Shewing that the rwbole Metbod propofed by the Doctor cannot be put in practice, and
Art. V. Shesoing bow to project the Tranfit of Venus on the Siun's Difc, as feen from different Places of the Earth; so as to find what its vigible Duration muft be at any given Place, according to any affumed Parallax of the Sun; and from the obferved Intervals between the Times of Venus's Egrefs from the Iun at particular Places, to find the Sun's true borizontal Parallax - $\quad 468$ Art. VI. Concerning the Map of the Tranjit 488 Art. VII. Containing an Account of Mr. Horrox's Obfervation of the Tranjit of Venus over the Sun, in the Year 1939; as it is publifbed in the Annual Regiter for the Year 1761
Art. VIII. Containing a flort Account of fome Obfervations of the Tranjit of Venus, A. D. 1761 , June 6 th; and the Diftance of the Planets from the Sum, as deduced from thofe Objervations. 496

A S TRONOMY

EXPLAINED UPON

Sir ISAAC NEWTON's Principles.

C H A P. I.

 Of Aftronomy in general.0F all the fciences cultivated by mankind, Aftronomy is acknowledged to be, and moft interefting, and the moft ufeful. For, by knowledge derived from this fcience, not only the bulk of the earth is difcovered, the fituation and extent of the countries and kingdoms upon it afcertained, trade and commerce carried on to the remoteft part of the world, and the various products of feveral countries diftributed for the health, comfort, and conveniency of its inhabitants; but our very faculties are enlarged with the grandeur of the ideas it conveys, our minds exalted above the low contracted prejudices of the vulgar, and our underftandings clearly convinced, and affected with the conviction of the exiftence, wifdom, power, goodnefs, immutability, and fuperintendency of the SUPREME BEING! So that without an hyperbole,
"An undevout Aftronomer is mad*."
2. From this branch of knowledge we alfo learn, by what means or laws the Almighty carries on, and continues the wonderful harmony, order, and connexion obfervable throughout the planetary fyfterm; and are led by very powerful arguments to form this pleafing deduction, that minds capable

[^0]of fuch deep refearches, not only derive their origin from that adorable Being, but are alfo incited to afpire after a more perfect knowledge of his nature, and a ftricter conformity to his will.

The Earth tut a point as feen from the Sur.

The Stars are Suns,
and innumerable.
3. By Aftronomy we difcover that the Earth is at fo great a diftance from the Sun, that if feen from thence it would appear no bigger than a point; although its circumference is known to be 25,020 miles. Yet that diftance is fo fmall, compared with the Earth's diftance from the Fixed Stars, that if the orbit in which the Earth moves round the Sun were folid, and feen from the neareft Star, it would likewife appear no bigger, than a point, although it is about 162 millions of miles in diameter. For the Earth in going round the Sun is 162 millions of miles nearer to fome of the Stars at one time of the year, than at another; and yet their apparent magnitudes, fituations, and diftances from one another ftill remain the fame; and a telefcope which magnifies above 200 times, does not fenfibly magnify them: which proves them to be at leaft 400 thoufand times farther from us than we are from the Sun.
4. It is not to be imagined that all the Stars are placed in one concave furface, fo as to be equally diftant from us; but that they are placed at immenfe diftances from one another through unlimited fpace. So that there may be as great a diftance between any two neighbouring Stars, as beiween our Sun and thofe which are neareft to him. Therefore an Obferver, who is neareft any fixed Star, will look upon it alone as a real Sun; and confider the reft as fo many fhining points, placed at equal diftances from him in the Firmament.
5. By the help of telefcopes we difcover thoufands of Stars, which are invifible to the bare eye; and the better our glaffes are, ftill the more become vifible: fo that we can fet no limits either to their number or their diftances. The celebrated Huycens carried his thoughts fo far, as to believe it
not impoffible that there may be Stars at fuch inconceivable diftances, that their light has not yet reached the Earth fince its creation; although the velocity of light be a million of times greater than the velocity of a cannon ball, as fhall be demonftrated afterward, § 197.216 : and, as Mr. Addison very juftly obferves, this thought is far from being extravagant, when we confider that the Univerfe is the work of infinite power, prompted by infinite goodnefs; having an infinite fpace to exert itfelf in; fo that our imaginations can fet no bounds to it.
6. The Sun appears very bright and large in comparifon of the Fixed Stars, becaufe we keep conftantly near the Sun, in comparifon of our immenfe diftance from the Stars. For, a fpectator placed as near to any Star as we are to the Sun, would fee that Star a body as large and bright as the Sun appears to us: and a fpectator, as far diftant from the Sun as we are from the Stars, would fee the Sun as fmall as we fee a Star, divefted of all its circumvolving planets; and would reckon it one of the Stars in numbering them.
7. The Stars being at fuch immenfe diftances from the Sun, canoor poffibly receive from him fo ftrong a light as they feem to have; nor any bright-

The Stars

lignt eri-

 lightened by the Sun: nefs fufficient to make them vifible to us. For the Sun's rays mult be fo fcattered and diffipated before they reach fuch remote objects, that they can never be tranfmitted back to our eyes, fo as to render thefe objects vifible by reflection. The Stars therefore hine with their own native and unborrowed luftre, as the Sun does; and fince each particular Star, as well as the Sun, is confined to a particular portion of fpace, it is plain that the Stars are of the fame nature with the Sun.8. It is no ways probable that the Aimighty, who always acts with infinite wifdom, and does nothing in vain, fhould create fo maný glorious Suns, fit for fomany important purpoles, and place them
at fuch dittances from one another, without proper objects near enough to be benefited by their

They are probably furrounded by Planets. influences. Whoever imagines they were created only to give a faint glimmering light to the inhabitants of this Globe, muft have a very fuperficial knowledge of Aftronomy, and a mean opinion of the Divine Wifdom: fince, by an infinitely lefs exertion of creating power, the Deity could have given our Earth much more light by one fingle additional Moon.
9. Inftead then of one Sun and one World only in the Univerfe, as the unfkilful in Aftronomy imagine, that Science difcovers to us fuch an inconceivable number of Suns, Syftems, and Worlds, difperfed through boundlefs Space, that ifour Sun, with all the Planets, Moons, and Comets, belonging to it, were annihilated, they would be no more miffed, by an eye that could take in the whole Creation, than a grain of fand from the fea-fhore. The fpace they poffefs being comparatively fo fmall, that it would fcarce be a fenfible blank in the Univerfe, although Saturn, the outermoft of our planets, revolves about the Sun in an Orbit of 4884 millions of miles in circumference ${ }^{*}$, and fome of our Comets make excurfions upward of ten thoufand millions of miles beyond Saturn's Orbit; and yet, at that amazing diftance, they are incomparably nearer to the Sun than to any of the Stars; as is evident from their keeping clear of the attractive power of all the Stars, and returning periodically by virtue of the Sun's attraction.
10. From what we know of our own Syftem, it may be reafonably concluded that all the reft are with equal wifdom contrived, fituated, and provided with accommodations for rational inhabitants. Let us therefore take a furvey of the Syftem to which we belong; the only one accef-

* The Georgian Planet, difcovered fince Mr. Fergufon's time, revolves round the Sun in an Orbit 5673 millions of miles in circumference.
fible to us; and from thence we fhall be the better enabled to judge of the nature and end of the other Syftems of the Univerfe. For although there is almoft an infinite variety in the parts of the Creation, which we have opportunities of examining, yet there is a general analogy running through and connecting all the parts into one fcheme, one defign, one whole!
II. And then, to an attentive confiderer, it will appear highly probable, that the Planets of our Syftem, together with their attendants called Satellites or Moons, are much of the fame nature with
as our Solar Planets are. our Earth, and deftined for the like purpofes. For they are folid opaque Globes, capable of fupporting animals and vegetables. Some of them are bigger, fome lefs, and fome much about the fize of our Earth. They all circulate round the Sun, as the Earth does, in a Chorter or longer time, according to their refpective diftances from him; and have, where it would not be inconeenient, regular returns of fummer and winter, fpring and autumn. They have warmer and colder climates, as the various productions of our Earth require: and, in fuch as afford a poffibility of difcovering it, we obferve a regular motion round their axis like that of our Earth, caufing an alternate return of day and night; which is neceffary for labour, reft, and vegetation, and that ali parts of their furfaces may be expofed to the rays of the Sun.

12. Such of the Planets as are fartheft from the Sun, and therefore enjoy leaft of his light, have that deficiency made up by feveral Moons, which conftantly accompany, and revolve about them as our Moon revolves about the Earth. The

The farthert from the Sun have moft Moons to enlighten their nights, remoteft Planet has, over and above, a broad ring encompaffing it; which like a lucid Zone in the Heavens reflects the Sun's light very copioully on that Planet: fo that if the remoter Planets have the Sun's light fainter by day than we, they have
an addition made to it morning and evening by one or more of their moons, and a greater quantity of light in the night-time.

Our Moon mountainous like the Earth,
13. On the furface of the Moon, becaufe it is nearer to us than any other of the celeftial Bodies are, we difcover a nearer refemblance of our Earth. For, by the affiftance of telefcopes, we obferve the Moon to be full of high mountains, large valleys, and deep cavities. Thefe fimilarities leave us no room to doubt, but that all the Planets and Moons, in the Syftem, are defigned as commodious habitations for creatures endowed with capacities of knowing and adoring their beneficent Creator.
14. Since the Fixed Stars are prodigious fpheres of fire, like our Sun, and at inconceivable diftances from one another, as well as from us, it is reafonable to conclude they are made for the fame purpofes that the Sun is; each to beftow light, heat, and vegetation on a certain number of inhabited Planets, kept by gravitation within the fphere of its activity.

Numberlefs Suns and Worlds.
15. What an auguft, what an amazing conception, if human imagination can conceive it, does this give of the works of the Creator! Thoufands of thoufands of Suns, mulciplied without end, and ranged all around us, at immenfe diftances from each uther, attended by ten thoufand times ten thoufand worlds, all in rapid motion, yet calm, regular, and harmonious, invariably keeping the paths prefcribed them; and thefe worlds peopled with myriads of intelligent beings, formed for endlefs progreffion in perfection and felicity!
16. If fo much power, wifdom, goodnefs, and magnificence is difplayed in the material Creation, which is the leaft conliderable part of the Univerfe, how grear, how wife, how good mult HE be, who made and governs the Whole!

\square
\square
\square
\square
\square
\square ，

\square
\square
\square
\square
\square
\square
\square
\square

\qquad
\qquad
\qquad
\qquad
\square
\qquad
\square

C H A P. II.

A brief Defrription of the Solar System.

17. T HE Sun, with the Planets and Comets which move round him as their center, conPLATEI. Fig. I. ftitute the Solar Syftem. Thofe Planers which are near the Sun not only finifh their circuits fooner, but likewife move fafter in their refpective Orbits, than thofe which aremore remote from him. Their The Solar. syñem. motions are all performed from weft to eaft, in Orbits nearly circular. Their names, diftances, bulks, and periodical revolutions, are as follow:
18. The Sun \odot, an immenfe globe of fire, is The Sun. placed near the common center, or rather in the lower* focus, of the Orbits of all the Planets and Comets \dagger; and turns round his axis in 25 days 6 hours, as is evident by the motions of fpots feen on his furface. His diameter is computed to be Fig. I. 763,000 miles; and, by the various attractions of the circumvolving Planets, he is agitated by a

[^1] and moderately ftretched by the point of a black-lead pencil carried round by an even motion and light preffure of the hand, an oval or ellipfis will be defcribed; and the points where the pins are fixed are called the foci or focufes of the ellipfis. The Orbits of all the Planets are elliptical, and the Sun is placed in or near one of the foci of each of them: and that in which be is placed, is called the lorwer focus.

+ Aftronomers are not far from the truth when they reckon the Sun's center to be in the lower focus of all the Planetary Orbits. Though, fricly fpeaking, if we confider the focus of Mercury's Orbit to be in the Sun's center, the focus of Venus's Orbit will be in the common center of gravity of the Sun and Mercury ; the focus of the Earth's Orbit in the common center of gravity of the Sun, Mercury, and Venus; the focus of the Orbit of Mars in the common center of gravity of the Sun, Mercury, Venus, and the Earth; and fo of the reft. Yet the focufes of the Orbits of all the Planets, except Saturn, will not be fenfibly removed from the center of the Sun; nor will the focus of Saturn's Orbit recede fenfibly from the common center of gravity of the Sun and Jupiter.

PLATE I. fmall motion round the center of gravity of the Syitem. All the Planets, as feen from him, move the farme way, and according to the order of the Signs in the graduated Circle r ४ $\amalg \sigma, \&<c$. which reprefents the great Ecliptic in the Heavens: but, as feen from any one Planet, the reft appear fometimes to go backward, fometimes forward, and fomerimes toftand fill; not in circles nor ellipfes, but* in looped curves, which never return into themfelves. The Comets come from all parts of the Heavens, and move in all forts of directions.
19. Having mentioned the Sun's turning round his axis, and as there will be frequent occafion to fpeak of the like motion of the Earth and other Planets, it is proper here to inform the young Tyro in Aftronomy, that neither the Sun nor Planets have material axes to turn upon, and fupport them,

The Axes of the Pla. nete, what. as in the little imperfect machines contrived to reprefent them. For the axis of a Planet is a line conceived to be drawn through its center, about which it revolves as if on a real axis. The extremities of this line, terminating in oppofite points of the Planet's furface, are called its Poles. That which points toward the nortbern part of the Heavens, is called the Nortb Pole; and the other, pointing toward the foutbern part, is called the Soutt Pole. A bowl whirled from one's hand into the open air, turns round fuch a line within iffelf, while it moves forward; and fuch are the lines we mean, when we fpeak of the Axes of the Heavenly bodies.

Their Orbits are not in the fame plane with the Eclipt'c.
20. Let us fuppofe the Earth's Orbit to be a thin, even, folid plane; cutting the Sun through the center, and extended out as far as the Starry Heavens, where it will mark the great Circle called the Ecliptic. This Circle we fuppofe to be divided into 12 equal parts, called Signs; each Sign into 30 equal parts, called Degrees; each Degree into 60 equal parts, called Minutes; and every Minute

* As reprefented in Plate III. Fig. I. and defcribed \$ 13 §.
into 60 equal parts, called Seconds: fo that a Second is the 6oth part of a Minute; a Minute the 6oth part of a Degree; and a Degree the 360ch part of aCircle, or 3 orh part of a Sign. The Planets of the Orbits of all the other Planets likewife cut the Sun in halves; but extended to the Heavens, form Circles different from one another, and from the Ecliptic; one half of each being on the north fide, and the other on the fouth fide of it. Confequently the Orbit of each Planet croffes the Ecliptic in two oppofite points, which are called the Planet's Nodes. Thefe Nodes are all in different parts of the Ecliptic; and therefore, if the planetary Tracks remained vifible in the Heavens, they would in fome meafure refemble the different ruts of waggon-wheels croffing one another in different parts, but never going far afunder. That Node, or Interfection of the Orbit of any Planet with the Earth's Orbit, from which the Planet afcends northward above the Ecliptic, is called the Afcending Node of the Planet: and the other, which is directly oppofite thereto, is called its Defcending Node. Saturn's Afcending Node* is in 21 deg. 32 min . of Cancer σ_{5}, Jupiter's in 8 deg. 49 min . of the fame Sign, Mars's in 18 deg. 22 min . of Taurus y, Venus's in 14 deg. 44 min . of Gemini II, and Mercury's in 16 deg. 2 min . of Taurus. Here we confider the Earth's Orbit as the ftandard, and the Orbits of all the other Planets as oblique to it.

21. When we fpeak of the Planets Orbits, all that is meant is their paths through the open and unrefiting Space in which they move; and are

Where fituated.
Their Nodes.

The Planets Orbits, what. kept in by the attractive power of the Sun, and the projectile force impreffed upon them at firf: between which power and force there is fo exact an adjuftment, that they continue in the fame tracks without any folid Orbits to confine them.

[^2]plate I. Mercury.

Fig. J.

May be in. haoited.

Has like phafes with the Moon.
22. Mercury, the neareft Planet to the Sun, goes round him in the circle marked $\underset{\text {, , in } 87}{ }$ days 23 hours of our time nearly; which is the length of his year. But being feldom feen, and no fpots appearing on his furface or difc, the time of his rotation on his axis, or the length of his days and nights is as yet unknown. His diftance from the Sun is computed to be 32 millions of miles, and his diameter 2600 . In his courfe round the Sun, he moves at the rate of 95 thoufand miles every hour. His light and heat from the Sun are almoft feven times as great as ours; and the Sun appears to him almoft feven times as large as to us. The great heat on this Planet is no argument againft its being inhabited ; fince the Almighty could as eafily fuit the bodies and conftitutions of its inhabitants to the heat of their dwelling, as he has done ours to the temperature of our Earth. And it is very probable that the people there have fuch an opinion of us, as we have of the inhabitants of Jupiter and Saturn; namely, that we mult be intolerably cold, and have very little light at fo great a diftance from the Sun.
23. This Planet appears to us with all the various phafes of the Moon, when viewed at different times by a good telefcope: fave only that he never appears quite Full, becaufe his enlightened fide is never turned directly toward us, but when he is fo near the Sun as to be loft to our fight in its beams. And, as his enlightened fide is always toward the Sun, it is plain that he Chines not by any light of his own; for if he did, he would conftantly appear round. That he moves about the Sun in an Orbit within the Earch's Orbit, is alfo plain (as will be more largely fhewn by and by, $\$ 141, \mathcal{E}$ feq.) becaufe he is never feen oppofite to the Sun, nor above 56 times the Sun's breadth from his center.
24. His Orbit is inclined feven degrees to the Ecliptic; and that Node, $\S 20$, from which he afcends Northward above the Ecliptic, is in the 16th degree of Taurus; and the oppofite Node is in the 16th degree of Scorpio. The Earth is in thefe points on the 7 th of November and 5 th of May; and when Mercury comes to either of his Nodes at his * inferior Conjunction about the le times, he will appear to pafs over the difc or face of the Sun, like a dark round $\mathrm{f}_{\mathrm{pot}}$. But in all other parts of his Orbit his Conjunctions are invifible, becaufe he either goes above or below the Sun.
25. Mr. Whiston has given us an account of feveral periods at which Mercury may be feen on the Sun's difc, viz. In the year 1782, Nov. 12th,
plate 1. His Orbit and Nodes. at 3 h .44 m . in the afternoon; 1786, May 4th, at 6 h .57 m . in the forenoon; 1789 , Nov. 5 th , at 3 h .55 m . in the afternoon; and 1799, May 7 th, at 2 h .34 m . in the afternoon. There will be feveral intermediate Tranfits, but none of them vifible at London.
26. Venus, the next Planet in order, is com- Venus. puted to be 59 millions of miles from the Sun; and by moving at the rate of 69 thoufand miles Fig. Io every hour in her Orbit, in the circle marked of, fhe goes round the Sun in 224 days 17 hours of our time, nearly; in which, though it be the full length of her year, the has only $9^{\frac{1}{4}}$ days, according to Bianchinis's obfervations \dagger; fo that, to her, every

* When he is between the Earth and the Sun in the nearer part of his Orbit.
+ The elder Caffini had concluded from obfervations made by himfelf in 1667, that Venus revolved on her axis in a little more than 23 h . becaufe in 24 h . he found that a fpot on her furface was about 15° more advanced than it was the day before; and it appeared to him that the fpot was very fenfibly advanced in a quarter of an hour. In 1728, Bianchini publifhed a splendid work, in folio, at Rome, entitled Hefperi es Pbo/Pbori nova phenomena; in which are the obfervations here referred

PLATE I. every day and night together is as long as $24 \frac{1}{3}$ days and nights with us. This odd quarter of a day in every year makes every fourch year a leap-year to Venus; as the like does to our Earth. Her diameter is 7906 miles; and hy her diurnal motion the inhabitants about her Equator are carried 43 miles every hour, befide the 69,000 above-mentioned.

Her Orbit lies between the Earth and Mercury.

She is our morning. and evening Star by turns.
27. Her Orbit includes that of Mercury within it; for at her greateft Elongation, or apparent diftance from the Sun, fhe is 96 times the breadth of that luminary from his center; which is almoft double of Mercury's greateit Elongation. Her Orbit is included by the Earth's; for if it were not, the might be feen as often in Oppofition to the Sun, as the is in Conjunction with him; but the was never feen 90 degices, or a fourth part of a Circle, from the Sun.
28. When Venus appears welt of the Sun, the rifes before him in the morning, and is called the Morning star: when fhe appears ealt of the Sun, fhe fhines in the evening after he fets, and is then called the Evening Star: being each in its turn for 290 days. It may perhaps be furprifing at firt, that Venus fhould keep longer on the eaft or weft of the Sun, than the whole time of her $\mathrm{Pe}-$ riod round him. But the difficulty vanifhes when we confider that the Earth is all the while going round the Sun the fame way, though not fo quick as Venus: and therefore her relative motion to
referred to. Bianchini agrees perfectly with Caffini that the fpots, which are feen on the furface of Venus, advanced about 15° in $24^{\mathrm{h}} \mathrm{h}$. but he afferts that be could not perceive they had made any advance in 3 h . and therefore concludes, that inftead of making one complete revolution and 15° of another, as Caltini conjectured, in 24 h . thofe fpors advance but the odd 15° in that time, and that the time of a revolution is tomewna: more than 24 days. The arguments in favnur of the two hypnithefes are very equal; but almoft every aftronomer, except Mr. Yergufon, has adopted Caffini's.
the Earth muft in every period be as much flower than her abfolute motion in her Orbit, as the Earth during that time advances forward in the Ecliptic; which is 220 degrees. To us the appears through a telefcope in all the various hapes of the Moon.
29. The Axis of Venus is inclined 75 degrees to the Axis of her Orbit; which is $51 \frac{1}{2}$ degrees more than our Earth's Axis is inclined to the Axis of the Ecliptic: and therefore her feafons vary much more than ours do. The North Pole of her Axis inclines toward the 20th degree of Aquarius, our Earth's to the beginning of Cancer; confequently the northern parts of Venus have fummer in the Signs where thofe of our Earth have winter, and vice verfä.
30. The * artificial day at each Pole of Venus is as long as $112 \frac{1}{2} \dagger$ natural days on our Earth.
31. The Sun's greateft Declination on each fide of her Equator amounts to 75 degrees ; therefore her \ddagger Tropics are only 15 degrees from her

Her Tropics and Polar Circles how fituated. Poles; and her || Polar Circles as far from her Equator. Confequently the Tropics of Venus are between her Polar Circles and her Poles; contrary to what thofe of our Earth are.
32. As her annual Revolution contains only $9 \frac{\pi}{4}$ of her days, the Sun will always appear to go

The Sun's dailyCourfe, through a whole Sign, or twelfth part of her Orbit, in a little more than three quarters of her

- The time between the Sun's rifing and fetting.
+ One entire revolution, or 24 hours.
I Thefe are leffer circles parallel to the Equator, and as many degrees from it, toward the Poles, as the Axis of the Planet is inclined to the Axis of its Orbit. When the Sun is advanced fo far north or fouth of the Equator, as to be directly over either Tropic, he goes no farther; but recurns toward the other.

II Thefe are leffer circles round the Poles, and as far from them as the Tropics are from the Equator. The Poles are, the very north and fouth points of the Planet.
and great Declination.

To deter. mine the points of the Compafs at hes Poles,
natural day, or nearly in $18 \frac{3}{4}$ of our days and nights.
33. Becaufe her day is fo great a part of her year, the Sun changes his Declination in one day fo much, that if he paffes vertically, or directly over head of any given place on the Tropic, the next day he will be 26 degrees from it : and whatever place he paffes vertically over when in the Equator, one day's revolution will remove him $36 \frac{1}{4}$ degrees from it. So that the Sun changes his Declination every day in Venus about 14 degrees more, at a mean rate, than he does in a quarter of a year on our Earth. This appears to be providentially ordered, for preventing the too greateffects of the Sun's heat (which is twice as great on Venus as on the Earth) fo that he cannot thine perpendicularly on the fame places for two days together; and on that account, the heated places have time to cool.
34. If the inhabitants about the North Pole of Venus fix their South, or Meridian Line, through that part of the Heavens where the Sun comes to his greateft Height, or North Declination, and call thole the eaft and weft points of their Horizon, which are 90 degrees on each fide from that point where the Horizon is cut by the Meridian Line, thefe inhabitants will have the following remarkable appearances.

The Sun will rife $22 \frac{\pi}{2}$ degrees* north of the eaft, and going on $112 \frac{\frac{\pi}{2}}{}$ degrees, as meafured on the plane of the \dagger Horizon, he will crofs the Me ridian at an altitude of $12 \frac{1}{2}$ degrees; then making an entire revolution wichout fetting, he will crofs it again at an altitude of $48 \frac{\pi}{2}$ degrees; at the next revolution he will ciofs the Meridian as he comes to his greateft height and declination, at the

[^3]altitude
altitude of 75 degrees; being then only 15 degrees from the Zenith, or that point of the Heavens

Surprifing appedrances at her Poles. which is directly over head: and thence he will defcend in the like fpiral manner; croffing the Meridian firft at the altitude of $48 \frac{1}{2}$ degrees; next at the altitude of $12 \frac{1}{2}$ degrees; and going on thence $112 \frac{1}{2}$ degrees, he will fet $22 \frac{1}{2}$ degrees north of the weft; fo that, after having been $4 \frac{5}{8}$ revolutions above the Horizon, he defcends below it to exhibit the like appearances at the South Pole.
35. At each Pole, the Sun continues half a year without fetting in fummer, and as long without rifing in winter; confequently the polar inhabitants of Venus have only one day and one night in the year; as it is at the Poles of our Earth. But the difference between the heatof fummer and cold of winter, or of mid-day and mid-night, on Venus, is much greater than on the Earth : becaule on Venus, as the Sun is for half a year together above the Horizon of each Pole in its turn, fo he is for a confiderable part of that time near the Ze nith; and during the other half of the year always below the Horizon, and for a great part of that time at leaft 70 degrees from it. Whereas, at the Poles of our Earth, although the Sun is for half a year together above the Horizon; yet he never afcends above, nor defcends below it, more than $23^{\frac{\pi}{3}}$ degrees. When the Sun is in the Equinoctial, or in that Circle which divides the northern half of the Heavens from the fouthern, he is feen with one half of his Difc above the Horizon of the North Pole, and the other half above the Horizon of the South Pole ; fo that his center is in the Horizon of both Poles: and then defcending below the Horizon of one, he afcends gradually above that of the other. Hence, in a year, each Pole has one fpring, one autumn, a fummer as long as them both, and a winter equal in length to the other three feafons.

Ather Polar Circles.
36. At the Polar Circles of Venus, the feafons are much the fame as at the Equator, becaule there are only 15 degrees between them, § 31 ; only the winters are not quite fo long, nor the fummers fo thort: but the four feafons come twice round every year.

At her Tropics.

At her Equator.
37. At Venus's Tropics, the Sun continues for about fifteen of our weeks together without fetting in fummer; and as long without rifing in winter. While he is more than 15 degrees from the Equator, he neither rifes to the inhabitants of the one Tropic, nor fets to thofe of the other: whereas, at our terre?trial Tropics, he rifes and fets every day of the year.
38. At Venus's Tropics, the Seafons are much the fame as at her Poles; only the fummers are a little longer, and the winters a little fhorter.
39. At her Equator, the days and nights are always of the fame length; and yet the diurnal and nocturnal Arches are very different, efpecially when the Sun's declination is about the greateft: for then, his meridian altitude may fomerimes be twice as great as his midnight depreffion, and at other times the reverle. When the Sun is at his greateft declination, either north or fouth, his rays are as oblique at Venus's Equator, as they are at London on the fhorteft day of winter. Therefore, at her Equator there are two winters, two fummers, two fprings, and two autumns every year. But becaule the Sun flays for fome time near the Tropics, and paffes fo quicily over the Equator, every winter there will be almoft twice as long as fummer: the four feafons returning twice in that time, which confifts only of $9^{\frac{1}{4}}$ days.
40. Thofe parts of Venus which lie between the Poles and Tropics, and between the Tropics and Polar Circles, and alfo between the Polar Circles and Equator, partake more or lefs of the Phenomena of thefe Circles, as they are more or leis diftant from them.
41. From the quick change of the Sun's declination it happens, that if he rifes due ealt on any day, he will not fet due weft on that day, as with us; for if the place where he rifes due eaft be on the Equator, he will fet on that day almoft weftnorth.weft; or about $18 \frac{1}{2}$ degrees north of the weft. But if the place be in 45 degrees north latitude, then on the day that the Sun rifes due eaft he will fet north-weft by weft, or 33 degrees north of the weft. And in 62 degrees north latitude, when he rifes in the eaft, he fers not in that revolution, but juft touches the Horizon io degrees to the weft of the north point: and afcends again, continuing for $3 \frac{1}{4}$ revolutions above the Horizon without fetting. Therefore no place has the forenoon and afternoon of the fame day equally long, unlefs it be on the Equator, or at the Poles.
42. The Sun's alcitude at noon, or any other time of the day, and his amplitude at rifing and fetting, being very different at places on the fame parallel of latitude, according to the different lon-

The longitude of places eafily found in Venus. gitudes of thofe places, the longitude will be almoft as eafily found on Venus, as the latitude is found on the Earth: which is an advantage we can never have, becaufe the daily change of the Sun's declination is by much too fmall for that important purpofe. hour next year; and will crofs the Equator go de-

Great dif.

 ference of the Sun's amplitude at rifing and feuting.Erery fourth gear a leap year co Verus.

When the will appear un the Sun.
44. We may fuppofe that the inhabitants of Venus will be careful to add a day to fome particular part of every fourth year; which will keep the fame feafons to the fame days. For, as the great annual change of the Equinoxes and Solftices hifts the feafons a quarter of a day every year; they would be fhifted through all the days of the year in 36 years. But by means of this intercalary day, every fourth year will be a leap-year, which will bring her time to an even reckoning, and keep her Calendar always right.
45. Venus's Orbit is inclined 3 degrees 24 minutes to the Earth's ; and croffes it in the 15 th degree of Gemini and of Sagittarius ; and therefore, when the Earth is about thefe points of the Ecliptic at the time that Venus is in her inferior conjunction, fhe will appear like a fpot on the Sun, and afford a more certain method of finding the diftances of all the Planets from the Sun, than any other yet known. But thefe appearances inappen very feldom; and will be only twice vifible at London for one hundred and ten years to come. The firft time will be in 1761, Fune the 6 th , in the morning; and the fecond in 1769 , on the 3 d of fune in the evening. Excepting fuch Tranfits as thefe, fhe fhews the fame appearances to us regularly every eight years; her Conjunctions, Elongations, and Times of rifing and fetting, heing very nearly the fame, on the fame days as before.

She may have a Moon, although we cannot fee it.
46. Venus may have a Satellite or Moon, although it be undifcovered by us: which will not appear very furprifing, if we confider how inconveniently we are placed for feeing it. For its enlightened fide can never be fully turned toward us, but when Venus is beyond the Sun; and then, as Venus appears iittle bigger than an ordinary Star, her Moon may be too fmall to be perceived at fuch a diftance. When fhe is between us and the Sun, her full Moon has its dark fide toward us; and then we cannot fee it any more than we
can our own Moon at the time of Change. When Venus is at her greateft Elongation, we have but one half of the enlightened fide of her full Moon toward us; and even then it may be too far diftant to be feen by us. But if the has a Moon, is may certainly be feen with her upon the Sun, in the year 176s; unlefs its Orbit be confiderably inclined to the Ecliptic: for if it fhould be in conjunction or oppofition at that time, we can hardly imagine that it moves fo flow as to be hid by Venus all the fix hours that fhe will appear on the Sun's Difc*.
47. The Earth is the next Planet above Ve- The Earth. nus in the Syitern. It is 82 millions of miles Fig. 1 . from the Sun, and goes round him, in the circle \oplus, in 365 days 5 hours 49 minutes, from any Equinox or Solftice to the fame again: but from any fixed Star to the fame again, as feen from the Sun, in 365 days 6 hours and 9 minutes; the former being the length of the Tropical year, and and annual mution. the latter the length of the Sydereal. It travels at the rate of 5^{8} thoufand miles every hour ; which motion, though 120 times fwifter than that of a cannon-ball, is little more than half as fwift as Mercury's motion in his Orbit. The Earth's diameter is 7970 miles; and by turning round its A xis every 24 hours from Weft to Eaft, it caufes an apparent diurnal motion of all the heavenly Bodies from Eaft to Weft. By this rapid motion of the Earth on its Axis, the inhabitants abour the Equator are carried $10+2$ miles every hour, while thofe on the parallel of London are carried only about 580 , befide the 58 thoufand miles by the annual motion above-mentioned, which is common to all places whatever.
48. The Earth's Axis makes an angle of $23 \frac{1}{2}$ degrees with the Axis of its Orbit; and keeps

Inclination of its Axis.

[^4]always the fame oblique direction; inclining toward the fante fixed Stars * throughout its annual courfe, which caufes the returns of fpring, fummer, autumn, and winter; as will be explained at large in the tenth Chapter.
49. The Earch is round like a globe; as appears, 1. By its fhadow in Eclipfes of the Moon; which fhadow is always bounded by a circular line, § 314. 2. By our feeing the matts of a fhip while the hull is hid by the convexity of the water. 3. By its having been failed round by many navigators. The hills take off no more from the roundnefs of the Earth in comparifon, than grains of dult do from the roundnefs of a common Globe.

I's number of fquare milts.

The proportion of Jand and fea.
50. The feas and unknown parts of the Earth (by a meafurement of the belt Maps) contain 160 million 522 thoufand and 26 fquare miles; the inhabited parts 30° million 990 thoufand 569 ? Europe 4 million 456 thoufand and 65; Afia 10 million 768 thoufand 823; Africa 9 million 654 thoufand 807 ; America 14 million 110 thoufand 874. In all, 199 million 512 thoufand 595; which is the number of fquare miles on the whole furface of our Globe.

5I. Dr. Long, in the firft volume of his Aftronomy, p. 168, mentions an ingenious and eafy method of finding nearly what proportion the land bears to the fea; which is, to take the papers of a large terreftrial globe, and after feparating the land from the fea with a pair of fciffars, to weigh them carefully in fcales. This fuppofes the globe to be exactly delineated, and the papers all of equal thicknefs. The Doctor made the experiment on

* 'This is not ftrictly true, as will appear when we come to treat of the Receffion of the Equinoctial Points in the Heavens, § 2.46 ; which receffion is equal to the deviation of the Earth's Axis from its parallelifm; but this is rather too fmall to be fenfible in an age, except to thole who make very nice obfervacions.
the papers of Mr. Senex's feventeen-inch globe ; and found that the fea-papers weighed 349 grains, and the land only 124: by which it appears that almoft three-fourth parts of the furface of our Earth between the Polar Circles are covered with water, and that little more than one-fourth is dry land. The Doctor omitted weighing all within the Polar Circles; becaufe there is no certain meafurement of the land within them, fo as to know what proportion it bears to the fea.

52. The Moon is not a Planet, but only a The Moono Satellite or Attendant of the Earth; going round the Earth from Change to Change in 29 days 12 hours and 44 minutes; and round the Sun with it every year. The Moon's diameter is 2180 miles; and her diftance from the Earth's center 240 thoufand. She goes round her Orbit in 27 days 7 hours 43 minutes, moving about 2290 miles every hour ; and turns round her Axis exactly in the time that he goes round the Earth, which is the reafon of her keeping always the fame fide toward us, and that her day and night taken together is as long as our lunar month.
53. The Moon is an opaque Globe like the Earth, and flines only by reflecting the light of the Sun : therefore while that half of her which is toward the Sun is enlightened, the other half mult be dark and invifible. Hence, the difappears Her phaces. when the comes between us and the Sun; becaufe her dark fide is then toward us. When The is gone a little way forward, we fee a little of her enlightened fide: which flill increafes to our view, as he advances forward, until the comes to be oppofite to the Sun; and then her whole enlightened fide is toward the Earth, and the appears with a round illumined Orb, which we call the FullMoon; her dark fide being then turned away from the Earth. From the Full the feems to decreafe gradually as the goes through the orher half of her
courfe; Thewing us lefs and lefs of her enlightened fide every day, till her next change or conjunction with the Sun, and then fhe difappears as before.

A proof that She fhines nas by her own lighr.
54. This continual change of the Moon's phafes demonftrates that fhe mines not by any light of her own; for if the did, being globular, we fhould always fee her with a round full Orb like the Sun. Her Orbit is reprefented in the fcheme

Fig. I.

One half of her always enlightened. by the little circle m, upon the Earth's Orbit θ; but it is drawn fifty times too large in proportion to the Earth's; and yet is almoft too fmall to be feen in the Diagram.
55. The Moon has farce any difference of feafons; her Axis being almoft perpendicular to the Ecliptic. What is very fingular, one half of her has no darknefs at all; the Earth conftantly affording it a ftrong light in the Sun's abfence; white the other half has a fortnight's darknefs and a fortnight's light by turns.
56. Our Earth is a Moon to the Moon, waxing and weaning regularly, but appearing thirteen times as big, and affording her thirteen times as much light, as the does to us. When the changes to us the Earth appears full to her; and when fhe is in her firft quarter to us the Earth is in its third quarter to her; and vice vería.
57. But from one half of the Mloon, the Earth is never feen at all: from the middle of the orher half, it is always feen over head; turning round almoft thirty times as quick as the Moun does. From the circle which limits our view of the Moon, only one half of the Earth's fide next her is feen; the other half being hid below the Horizon of all places on that circle. To her, the Earth feems to be the biggeft body in the Univerfe; for it appears thirteen rimes as big as the cooes to us.
58. The Moon has no atmofphere of any vifible denfity furrounding her as we have: for if the had, we could never fee her edge to well defined as it appears; but there would be a cort of a mift
or hazinefs around her, which would make the Stars look fainter, when they are feen through it. But obfervation proves, that the Stars which difappear behind the Moun, retain their full luffre until they feem to touch her very edge, and then they vanifh in a moment. This has been offen obferved by Aftronomers, but particularly by CASSini of the Star r in the breaft of Virgo, which appears fingle and round to the bare eye; but through a refracting Telefcope of 16 feet appears to be two Stars fo near together, that the diftance between them feems to be but equal to one of their apparent diameters. The Moon was obferved to pafs over them on the 2 ift of April $1720, N$. S. and as her dark edge drew near to them, it caufed no change in their colour or fituation. At 25 min . 14 fec. paft 12 at night, the moft wefterly of thefe Stars was hid by the dark edge of the Moon: and in $\jmath \circ$ feconds afterward, the moft eatterly Star was hid : each of them difappearing behind the Moon in an inftant, without any preceding diminution of magnitude or brightnefs; which by no means could have been the cafe if there were an Atmofphere round the Moon; for then, one of the Stars falling obliquely into it before the other, ought by refraction to have fuffered fome change in its colour, or in its diftance from the other Star which was not yet entered into the Atmolphere. But no fuch alteration could be perceived, though the obfervation was performed with the utmoft attention to thar particular; and was very proper to have made fuch a difcovery. The faint light which has been feen all round the Moon, in total Eclipfes of the Sun, has been obferved, during the time of darknefs, to have its center coincident with the center of the Sun; and was therefore much more likely to arife from the Atmofphere of the Sun than from that of the Moon; for if it had been owing to the latter, its center would have gone along with the Moon's.

Nor Seas,

She is full of caverns and deep pits.

The Stars always vifible to the Moon.

The Earth a Dial to the Moor.
59. If there were feas in the Moon, the could have no clouds, rains, nor ftorms, as we have; becaufe fhe has no fuch Atmofphere to fupport the vapours which occafion them. And every one knows, that when the Moon is above our Horizon in the night-time the is vifible, unlefs the clouds of our Atmofphere hide her from our view; and all parts of her appear conftantly with the fame clear, ferene, and calm afpect. But thofe dark parts of the Moon, which were formerly thought to be feas, are now found to be only vaft deep cavities, and places which reflect not the Sun's light fo ftrongly as others, having many caverns and pits whofe fladows fall within them, and are always dark on the fides next the Sun; which demonftrates their being hollow: and moit of there pits have little knobs like hillocks ftanding within them, and cafting fhadows alfo; which caufe thefe places to appear darker than others which have fewer, or lef's remarkable caverns. All thefe appearances hew that there are no feas in the Moon; for if there were any, their furfaces would appear fmooth and even, like thole on the Earth.
60. There being no Atmofphere about the Moon, the heavens in the day-time have the appearance of night to a Lunarian who turns his back toward the Sun; and when he does, the Stars appear as bright to him as they do in the night to us. For, it is entirely owing to our Atmofphere that the Heavens are bright about us in the day.

6I. As the Earth turns round its Axis, the feveral continents, feas, and inlands appear to the Moon's inhabitants like fo many fpots of different forms and brightnefs, moving over its furface; but much fainter at forme times than others, as our clouds cover them or leave them. By thefe fpors the Lunarians can determine the time of the Earth's diurnal motion, juft as we do the mation of the Sun: and perhaps they meafure their time by
by the motion of the Earth's fpots; for they cannot have a truer dial.
62. The Moon's Ax is is fo nearly perpendicular to the Ecliptic, that the Sun never removes fenfibly from her Equator: and the * obliquity of her Orbit, which is next to nothing as feen from the Sun, cannot caufe the Sun to decline fenfibly from her Equator. Yet her inhabitants are not defticute of ineans for atcertaining the length of their year, though their method and ours mult differ. For we can know the length of our year by the return of our Equinoxes; but the Lunarians, having always equal day and night, mutt have recourfe to another method; and we may fuppofe, they meafure their year by obferving when either of the Poles of our Earth begins to be enlightened, and the other to difappear, which. is always at our Equinoxes; they being conveniently fituated for obferving great tracks of land about our Earth's Poles, which are entirely unknown to us. Hence we may conclude, that the year is of the fame abfolure length borh to the Earth and Moon, though very different as to the number of days: we having $365 \frac{x}{4}$ natural days, and the Lunarians only $1 \cdot \frac{7}{19}$; every day and night in the Moon being as long as 292^{\prime} on the Earth.
63. The Moon's inhabitants on the fide next the Earth may as eafily find the longitude of theirplaces as we can find the latitude of ours. For
and the $\ln n$ g:t udes of their places. the Earth keeping conftantly, or very nearly fo, over one Meridian of the Moon, the eaft or weft diftances of places from that Meridian are as eafily found, as we can find our diftance from the Equator by the Altitude of our celenial Poles.

[^5]64. The
platel. MLays.

Fin. 3.

His Armo. Iplicre and prates.

How the ane Plare's appest so Mars.
64. The Planet Mars is next in order, being the firft above the Earth's Orbit. His diftance from the Sun is computed to be 125 million of miles; and by travelling at the rate of 47 thoufand miles every hour, in the circle of, he goes round the Sun in 686 of our days and 23 hours, which is the length of his year, and contains $667 \frac{3}{8}$ of his days; every day and night together being 40 minutes longer than with us. His diameter is 4444 miles, and by his diurnal rotation the inhabitants about his Equator are carried 556 miles every hour. His quantity of light and heat is equal but to one half of ours; and the Sun appears but half as big to him as to us.
65. This planet being but a fifth part fo big as the Earth, if any Moon attends him, it mult be very fmall, and has not yet bien difcovered by our beft telefcopes. He is of a fiery red colour, and by his Appulies to fome of the fixed Stars, feems to be encompaffed by a very grofs Atmofphere. He appears fometimes gibbous, but never horned; which both fhews that his Orbit includes the Earth's within it, and that he fhines not by his own light.
66. To Mars, our Earth and Moon appear like two Moons, a bigger and a lefs: changing places with one another, and appearing fomerimes hurned, fometimes half or three quarters illuminated, but never full; nor at moft above one quarter of a degree from each cther, although they are 240 thoufand miles afunder.
67. Our Earth appears almoft as big to Mars as Venus does to us, and at Mars it is never feen above 48 degrees from the Sun; fometimes it appears to pals over the Difc of the Sun, and fo do Mercury and Venus: Bur Mercury can never be feen from Mars by fuch eyes as ours, unalifited by proper inftruments; and Venus will be as feldom feen as we fee Mercury. Jupiter and Saturn are as vifible to Mars as to us. His Axis is perpendicular
pendicular tothe Ecliptic, and his Orbit is inclined to it in an angle of 1 degree 50 minutes.
68. Jupiter, the biggelt of all the Planets, is Jupiter. fill higher in the Syftem, being about 426 million of miles from the Sun: and going at the rate of 25 thoufand miles every hour in his Orbit, which is reprefented by the circle 4 . He finifhes his annual period in eleven of our years 314 days and 12 hours. He is above 1000 times as big as the Earth, for his diameter is 81,000 miles ; which is more than ten times the diameter of the Earth.
69. Jupiter turns round his Axis in 9 hours 56 minutes; fo that his year contains io thoufand 470 days ; and the diurnal velocity of his equatorial parts is greater than the fwiftnefs with which he moves in his annual Orbit; a fingular circumflance, as far as we know. By this prodigious quick Rotation, his equatorial inhabitants are carried 25 thoufand 920 miles every hour (which is 920 iniles a hour more than an inhabitant of our Earth's equatcr moves in twenty-four hours) befide the 25 thoufand above-mentioned, which is common to all parts of his furface, by his annual motion.
70. Jupiter is furrounded by faint fubftances, called Belts, in which fo many changes appear,

His: Celts and: fputs. that they are generally thought to be clouds; for fome of them have been firft interrupted and broken, and then have vanifhed encirely. They have fometimes been obferved ofdifferent breadths, and afterward have all become nearly of the fame breadth. Large foots have been feen in thefe Belts; and when a Belt vanifhes, the contiguous fpots difappear with it. The broken ends of fome Belrs have been generally obferved to revolve in the fame time with the fpots: only thofe nearer the Equator in fomewhat lefs time than thofe near the Poles; perhaps on account of the Sun's greater heat near the Equator, which is parallel to the

Belts and courfe of the fpots. Several large fpots, which appear round at one time, grow oblong by degrees, and then divide into two or three round fpots. The periodical time of the fpots near the Equator is 9 hours 50 minutes, but of thefe near the Poles 9 hours 56 minutes. See Dr. Smith's Optics, § 1004, छ feq.

Hei 'ras no chae ee of reafo 15 ;
buthas 1 jur Moons.

Their pe-
riods round Jupiter.
71. The Axis of Jupiter is fo nearly perpendicular to his Orbit, that he has no fenfible change of feafons; which is a great advantage, and wifely ordered by the Auchor of Nature. For, if the Axis of this Planet were inclined any confiderable number of degrees, juft fo many degrees round each Pole would in their turn be almoft fix of our years together in darknefs. And, as each degree of a great circle on Jupiter contains 706 of our miles at a mean rate, it is eafy to judge what vaft tracks of land would be rendered uninhabitable by any confiderable inclination of his Axis.
72. The Sun appears but $\frac{1}{2}$ th part fo big to Jupiter as to us; and his light and heat are in the fame fmall proportion, but compenfated by the quick returns thereof, and by four Moons (fome bigger and fome lef's than our Earth) which revolve about him: fo that there is fcarce any part of this huge Planet but what is during the whole night enlightened by one or more of thefe Moons, except his Poles, whence only the fartheft Moons can be feen, and where light is not there wanted, becaufe the Sun conttantly circulates in or near the Horizon, and is very probably kept in view of both Pules by the refraction of Jupiter's Atmofphere, which, if it be like ours, has certainly refractive puwer enough for that purpofe.
73. The Orbits of thefe Moons are reprefented in the Scheme of the Solar Syltem by four fmall circles marked $1,2,3,4$, on Jupiter's Orbit 2; but they are drawn fifty times too large in proportion to it. The firft Moon, or that neareft to Jupiter, goes round him in 1 day 18 hours and 36 minuies
minutes of our time; and is 229 thouland miles diftant from his center: The fecond performs its revolution in 3 days 13 hours and 15 minutes, at $36+$ thoufand miles diftance: The third in 7 days 3 hours and 59 minutes, at the diftance of 580 thoufand miles: And the fourth or outermoft, in 16 days is hours and 30 minutes, at the diftance of one million of miles from his center.
74. The Angles under which the Orbits of Jupiter's Moons are feen from the Earth, as its mean diftance from Jupiter, are as follow: The firft, $3^{\prime} 55^{\prime \prime}$; the fecond, $6^{\prime} 14^{\prime \prime}$; the third, $9^{\prime} 58^{\prime \prime}$; and the fourth, $17^{\prime} 30^{\prime \prime}$. And their diftances from Jupiter, meafured by his femidiameters, are thus: The firt, $5 \frac{2}{3}$; the fecond, 9 ; the third, $14 \frac{23}{8}$; and the fourth, $25 \frac{18}{60}$. . This Planet, feen from its neareft Moon, appears 1000 times as large as our Moon does to us; waxing and weaning in all her monthly fhapes, every $42 \frac{1}{2}$ hours.
75. Jupiter's three neareft Moons fall into his Shadow, and are eclipfed in every Revolution; but the Orbit of the fourth Moon is fo much incilined, that it paffes by its oppofition to Jupiter, without falling into his fhadow, two years in every fix. By thefe Eclipfes, Aftronomers have not only difcovered that the Sun's light takes up eight minutes of time in coming to us; but they have alfo determined the longitudes of places on this Earth with greater certaincy and facility, than by any other method yet known; as fhall be explained in the eleventh Chapter.
76. The difference between the Equatorial and Polar diameters of Jupiter is 6230 miles; for his equatorial diameter is to his polar, as 13 to 12 . So that his Poles are 3115 miles nearer his center than his Equator is. This refults from his quick

The greas diff:rence between the Equatorial and Polar diameters of Jupiter. motion round his Axis; for the fluids, together

Two grased dicoveries made by the Eclipfes of Jupiter's Moons
with the light particles, which they can carry or wafh away with them, recede from the Poles which are at reft, toward the Equator where the motion is quickeft, until there be a fufficient number accumulated to make up the deficiency of gravity loft by the centrifugal force, which always arifes from a quick motion round an axis: and when the deficiency of weight or gravity of the particles is made up by a fufficient accumulation, there is an equilibriuma, and the equatorial parts rife no higher. Our Earth being but a very fmall Planet compared to Jupiter, and its motion ón its Axis being much llower, it is lefs flattened of courfe: for the difference between its equatorial and polar diameters is only as 230 to 229 , namely, 36 miles *.

1 lace of his i Nodes.
The differ. ence little in thufe of verur Earth. in an angle of 1 degree 20 minutes. His afcending Node is in the 8th degree of Cancer, and his delcending Node in the 8th degree of Capricorn.

Fiz: I.
78. Saturn, the remotelt of all the Planets \dagger is about 780 million of miles from the Sun; and, travelling at the rate of 18 thoufand miles every hour, in the circle marked b, performs its annual circuit in 29 ytars 167 days and 5 hours of our time; which makes only one year to that Planet. Its diameter is 67,000 miles: and therefore it is near 600 times as big as the Earth.

* According to the French meafures, a Degree of the Meridian at the liquator contains 340605.68 French lieet: and a Degree of th: Meridian in Lapland contains 344627.40 : fo that a Degree in Lapland is 4020.72 French Feet (or 4280.02 Engliff Feet) longer than a Degree at the Equator. The difference is Uo pants of an Englifh Mile.- Hence, the Earth's Equawrial Diameter contains 39386196 French Feet, or 41926 j56 Lingith; and the Polar Diameter 39202920 French Feet, or 4173:272 Englim. So that the Equatorial Diameter is $19508+$ Englith Peet, or 36.94^{8} Englifh Miles longer than the Axis.
\dagger The Georgian Planct not difcovered when this was written.

79. This
80. This Planet is furrounded by a thin broad Ring, as an artificial Globe is by a Horizon. The King appears double when feen through a good telefcope, and is reprefented by the figure in fuch an oblique view as it is generally feen. It is inclined 30 degrees to the Ecliptic, and is about 25 thoufand miles in breadth; which is equal to its diflance from saturn on all fides. There is reafon to believe that the Ring turns round its Axis, becaufe, when it is almoft edge-wife to us, it appears fomewhat thicker on one fide of the Planet than on the other; and the chickeft edge has been feen on different fides at different times. But Saturn having no vilible fpots on his body, whereby to determine the time of his turning round his Axis, the length of his day's and nights, and the pofition of his Axis, are unknown to us.
81. To Saturn the Sun appears only $\frac{1}{90}$ th part fo big as to us; and the light and heat he receives from the Sun are in the fame proportion to ours. But to compenfate for the fmall quantity of funlight, he has five Mouns, all going round him on she outfide of his Ring, and nearly in the fame plane with it. The firlt, or nearef Moon to $\mathrm{Sa}_{\text {a- }}$ turn, goes round him in 1 day 21 hours 19 minutes; and is 140 thoufand miles from his center: The fecond, in 2 days 17 hours 40 minutes; at the diftance of 187 thoufand miles: the third, in 4 days 12 hours 25 minutes; at 263 thoufand miles diftance: The fourth, in 15 days 22 hours 41 mi nutes; at the diftance of 600 thoufand miles: And the fifth, or outermoft, at one million 800 thoufand miles from Saturn's center, goes round him in 79 days 7 holars 43 minutes. Their Orbits in the Scheme of the Solar Syitem are reprefented by the five fmall circles, marked I. 2. 3.4.5. on Saturn's Orbit; but thefe, like the Orbits of the other Sa tellites, are drawn fifty rimes too large in proportion to the Orbits of their Primary Planets.
82. The Sun fhines almoft fifteen of our years together on one fide of Saturn's Ring without fetting, and as long on the other in its turn. So that the Ring is vifible to the inhabitants of that Planet for almoft fifteen of our years, and as long invifible by turns, if its A is has no inclination to

His Axis probably inclined to his Ring.

How the Ring appears to Sa turn and to us. its Ring : but if the Axis of the Planet be inclined to the Ring, fuppofe about 30 degrees, the Ring will appear and difappear once every natural day to all the inhabitants within 30 degrees of the Equator on both fides, frequently eclipfing the Sun in a Saturnian day. Moreover, if Saturn's Axis be fo inclined to his Ring, it is perpendicular to his Orbit; and thereby the inconvenience of different feafons to that Planet is avoided. For confidering the length of Saturn's year, which is almoft equal to thirty of ours, what a dreadful condition muft the inhabitants of his Polar regions be in, if they be half that time deprived of the light and heat of the Sun! which is not their cafe alone, if the Axis of the Planet be perpendicular to the Ring, for then the Ring mult hide the Sun from vaft rracks of land on each fide of the Equator for 13 or 14 of our years together, on the fouth fide and north fide by turns, as the Axis inclines to or from the Sun: the reverfe of which inconvenience is another good prefumptive proof of the inclination of $\mathrm{Sa}-$ turn's Axis to its Ring, and allo of his Axis being perpendicular to his Orbit.
82. This Ring, feen from Saturn, appears like a vaft luminous Arch in the Heavens, as if it did not belong to the Planet. When we fee the Ring moft open, its fhadow upon the Planet is broadeft; and from that time the fhadow grows narrower, as the Ring appears to do to us; until, by Saturn's annual motion, the Sun comes to the Plane of the Ring, or even with its edge; which being then directed toward us, becomes invifible on account of its thinnefs; as fhall be explained more largely in the tenti) Chapter, and illuftrated by a figure.

The Ring difappears twice in every annual Revolution of Saturn, namely, when he is in the 20th degree both of Pifces and of Virgo. And when Saturn is in the middle between thefe points, or in the zorh degree either of Gemini or of Sagittarius, his Ring appears moft open to us; and then its

In what
Signs Saturn appears to lofe his Ring; and
in what
Signs utap. pears moft open to us. longeft diameter is to its Chorteft, as 9 to 4.
83. To fuch eyes as ours, unaffitted by inftruments, Jupiter is the only Planet that can be feen from Saturn; and Saturn the only Planet that can be feen from Jupiter. So that the inhabitants of thefe two Planets mult either fee much farther than No Planet but Saturn can be feen from Jupiter ; nor any from Satura befide Jupiter. we do, or have equally good inftruments to carry their fight to renote objects, if they know that there is fuch a body as our Earth in the Univerfe: for the Earth is no bigger feen from Jupiter, than his Moons are feen from the Earth; and if his large body had not firft attracted our fight, and prompted our curiofity to view him with a telefcope, we thould never have known any thing of his Moons; unlefs by chance we had directed the telefcope toward that fmali part of the Heavens where they were at the time of obfervation. And the like is true of the Moons of Saturn.
84. The Orbit of Saturn is $2 \frac{1}{2}$ degrees inclined to the Ecliptic, or Orbit of our Earth, and inter- Naturn's. fects it in the 22d degree of Cancer and of Caprifrom Jupiter's, $\$ 77^{*}$.

85. The

* Since Mr. Fergufon's death, in 1776, a feventh primary Georgium Planet belonging to the Solar Syitem has been difcovered by Dr. Herfchell, and called by him the Georgium Sidus, out of refpect to his prefent majefty King George III. This Planet is fill higher in the Syftem than Saturn, being about 1565 million of miles from the Sun; and performs its annual circuit in 83 years 140 days and 8 hours of our time : confe. quently its motion, in its Orbit, is at the rate of about 7 thoufand miles in a hour. To a good eye, unaffited by a telefrope, this Planet appears like a faint Star of the fifth magnirade; and it cannot be readily diftinguined from a fixed Star with

The Sun's lizhe much Aronger on Jupiter and Saturn than is generally believed.
85. The quantity of light afforded by the Sun to Jupiter, being but $\frac{1}{28}$ th part, and to Saturn only $\frac{1}{50}$ th part, of what we enjoy; may at firft thought induce us to believe that thefe two Planets are entirely unfit for rational beings to dwell upon. But that their light is not fo weak as we imagine, is evident from their brightnefs in the night-time; and alfo from this remarkable Phenomenon, that when the Sun is fo much eclipfed to us, as to have only the 40 th part of his difc left uncovered by the Moon, the decreafe of light is not very fenfible: and juft at the end of darknefs in Total Eclipfes, when his weftern limb begins to be vifible, and feems no bigger than a bit of fine filver wire, every one is furprized at the brightnefs wherewith that fmall part of him fhines. The Moon when
with a lefs magnifying power than 200 times. Its apparent diameter fubtends an angle of no more than $4^{\prime \prime}$ to an obferver on the Earth ; but its real diameter is about 34,000 miles, and, confequently, it is about 80 times as big as the Earth. Hence we may infer, as the Earth cannot be feen under an angle of quite $\mathrm{s}^{\prime \prime}$ to the inhabitants of the Georgian Planet, that it has never yet been feen by them, unlefs their eyes, or inftruments, or both, be confiderably better than ours are.
The Orbit of this Planet is inclined to the Ecliptic in an angle $46^{\prime} 26^{\prime \prime}$. Its afcending Node is in the 13 th degree of Gemini, and its defcending Node in the 13 th degree of Sa gittarius.

As no fpots have yet been difcovered on its furface, the pofition of its Axis, and the length of its day and night are not known.

On account of the immenfe diftance of the Georgian Planet from the fource of light and heat to all the bodies in our Syfem, it was highly probable that feveral Satellites, or Moons revolved round it: accordingly, the high powers of Dr_{r}. Herfchell's telefcopes have enabled him to difcover two already; and it is not unlikely but there may be others which he has not yet feen. That which is neareft to the Planet revolves as the difance $16 \frac{1}{2}$ of the Planet's femi-diameters from it, and performs its revolution in 8 days, 17 hours, and 1 minute. The orther is about 22 femi-diameters of the primary from ir, and completes its revolution in 13 days, 11 hours, and 5 mi nutes. It is remarkable that the Orbits of thefe Satellites are almoft at right angles to the plane of the Ecliptic.

Full affords travellers light enough to keep them from miftaking their way; and yet, according to Dr. Smith *, it is equal to no more than a 90 thoufandth part of the light of the Sun : that is, phe Sun's light is go thoufand times as ftrong as the light of the Moon when full. Confequently, the Sun gives a thoufand times as much light to Saturn as the Full Moon does to us; and above three thoufand times as much to Jupiter. So that thefe two Planets, even without any Moons, would be much more enlightened than we at firft imagine; and by having fo many, they may be very comfortable places of refidence. Their heat, fo far as it depends on the force of the Sun's rays, is certainly much lefs than ours; to which no doubt the bodies of their inhabitants are as well adapted as ours are to the feafons we enjoy. And if we confider, that Jupiter never has any winter, even at his Poles, which probably is alfo the cafe with Saturn, the cold cannot be fo intenfe on thefe two Planets as is generally imagined. Befides, there may be fomething in the nature of their mould warmer than in that of our Earth: and we find that all our heat depends not on the rays of the Sun; for if it did, we fhould always have the fame months equally hot or cold at their annual returns.

All our heat depends not on the Sun't ray. But it is far otherwife, for February is fometimes warmer than May; which mult be owing to va. pours and exhalations from the Earth.
86. Every perfon who looks upon, and compares the Syftems of Moons together, which belong to Jupiter and Saturn, muft be amazed at the vaft magnitude of thefe two Planets, and the noble attendance they have in refpect of our little Earth : and can never bring himfelf to think, that an infinitely wife Creator hould difpofe of all his animals and vegetables here, leaving the other Planets

[^6]It is highly prunable that all the Planres re inhabited.
bare and deffitute of rational creatures. To fuppole that he had any view to our benefit, in creating thele Moons, and giving them their motions round Jupiter and Saturn; to imagine that he intencted thefe valt Bodies for any advantage to us, when he well knew that they could never be feen but by a few Aftronomers peeping through telefcopes; and that he gave to the Planets regular returns of days and nights, and different feafons to all where they would be convenient; but of no manner of fervice to us; except only what immediately regards our own Planet the Earth; to imagine, I lay, that he did all this on our account, would be charging him impioully with having done much in vain: and as ablurd, as to imagine that he has created a little Sun and a Planetary Syftem within the fhell of our Earth, and intended them for our ufe. Thefe confiderations amount to little lefs than a pofitive proof, that all the Planets are inhabited: for if they are not, why all this care in furnifhing them with fo many Moons, to fupply thofe with light which are at the greater diftances from the Sun? Do we not fee, that the farther a Planet is from the Sun, the greater Apparatus it has for that purpofe? fave only Mars, which being but a fmall Planet, may have Moons too fmall to be feen by us. We know that the Earth goes round the Sun, and turns round its own Axis, to produce the vicifitudes of fummer and winter by the former, and of day and night by the latter motion, for the benefit of its inhabitants. May we not then fairly conclude, by parity of reafon, that the end and defign of all the other Planets is the fame? and is nut t is agreeable to the beautiful harmony which exifts throughout the Univerfe? Surely it is : and raifes in us the moft magnificent ideas of the SLPRI Me BEING, who is every where, and at all times prefent; difplaying his power, wifdom, and goodnefs among all his creatures! and diftributing happinefs to innumerable ranks of various beings!
87. In Fig. II. we have a view of the proportional breadth of the Sun's face or difc, as feen from the different Planets. The Sun is reprefented $\mathrm{N}^{\circ}{ }_{1}$, as feen from Mercury; $\mathrm{N}^{\circ}{ }_{2}$, as feen $\begin{aligned} & \text { ton the differ- } \\ & \text { ent Plants. }\end{aligned}$ from Venus; $\mathrm{N}^{\circ} 3$, as feen from the Earth; $\mathrm{N}^{\bullet} 4$, as feen from Mars; $\mathrm{N}^{9} 5$, as feen from Jupiter; and $\mathrm{N}^{\circ} 6$, as feen from Saturn.

Let the circle B be the Sun as feen from any fig. III. Planet at a given diftance; to another Planet, at double that diftance, the Sun will appear juft of half that breadth, as A; which contains only one fourth part of the area or furface of B. For all circles, as well as fquare furfaces, are to one another as the fquares of their diameters. Thus, the fquare A is juft half as broad as the fquare B; and Fig. iv. yet it is plain to fight, that B contains four times as much furface as A. Hence, by comparing the diameters of the above Circles (Fig. II.) together, it will be found, that in round numbers, the Sun appears 7 times larger to Mercury than to us, 90 times larger to us than to Saturn, and 630 times as large to Mercury as to Saturn.
88. In Fig. V. we have a view of the bulks of Fig. v. the Planets in proportion to each other, and to a fuppoled globe of two feet diameter for the Sun. The Earth is 27 times as big as Mercury, very little bigger than Venus, 5 times as big as Mars; but Jupiter is 1049 times as big as the Earth, Saturn 5^{36} times as big, exclufive of his Ring; and the S un is 877 thoufand 650 times as big as the Earth. If the Planets in this Figure were fet at their due diftances from a Sun of two fert diameter, according to their proportional bulks, as in our Syftem, Mercury would be 28 yards from the Sun's center; Venus 51 yards 1 foot; the Earti 70 yards 2 feet; Mars 107 yards 2 feet; Jupiter 370 yards 2 feet; and Saturn 760 yards 2 feer. The Comer of the year 1680, at its greateft diftance, 10 thoufand 760 yards. In this proportion, the Moon's diftance from the center of the Earch would be only $7_{\frac{1}{2}}$ inches.

Plate Anidea of their difo tances.

Why the Plantts appear bigger ard lefs at different times.

Fig. I.

The Coenets.
89. To affift the imagination in forming an idea of the valt diftances of the Sun, Planets, and Stars, let us fuppofe, that a body projected from the Sun fhould continue to fly with the fwiftnefs of a can-non-ball, i.e. 480 miles every hour; this body would reach the Orbit of Mercury, in 7 years 221 days; of Venus, in 14 years 8 days; of the Earth, in 19 years 91 days; of Mars, in 29 years 85 days; of Jupiter, in 1 co years 280 days; of Saturn, in 184 years 240 days; 10 the Comet of 1630 , at its greatelt diftance from the Sun, in 2660 years; and to the neareft fixed Stars in about 7 million 600 thoufand years.
90. As the Earth is not in the center of the Orbits in which the Planets move, they come nearer to it and go farther from it, at different times; on which account they appear bigger and lefs by rurns. Hence, the apparent magnitudes of the Planets are not always a certain rule to know them by.
21. Under Fig. III. are the names and characters of the twelve figns of the Zodiac, which the Reader fhould be perfectly well acquainted with; fo as to know the characters without feeing the names. Each fign contains 30 degrees, as in the Circle bounding the Solar Syltem; to which the characters of the figns are fet in their proper places.
92. The Comets are folid opaque bodies, with long tranfparent trains or tails, iffuing from that fide which is turned away from the Sun. They move about the Sun in very eccentric ellipfes; and are of a much greater denfity than the Earth; for fome of them are heated in every period to fuch a degree, as would vitrify or diffipate any fubftance known to us. Sir Isaac Newton computed the heat of the Comet which appeared in the year 1680, when neareft the Sun, to be 2000 times hotter than red hot iron, and that being thus heated, ir mult retain its heat until it comes round again, although its Period fhould be more than twenty thoufatad
thoufand years; and it is computed to be only 575 .

```
PLATE I.
``` The method of computing the heat of bodies, keeping at any known diftance from the Sun, fo far as their heat depends on the force of the Sun's rays, is very eafy; and fhall be explained in the eighth Chapter.
93. Part of the Paths of three Comets are delineated in the Scheme of the Solar Syftem, and the years marked in which they made their appearance. Thereare, at leaft, 21 Comets belonging to ourSyftem, moving in all forts of directions; and all thofe which have been obferved, have moved through the ethereal Regions and the Orbits of the Planets, They prove that the Or. bits of the Planers are not folid. without fuffering the leaft fenfible refiftance in their motions; which plainly proves that the Planets do not move in folid Orbs. Of all the Comets, the Periods of the above mentioned three only are known with any degree of certainty. The firft of theee Comets appeared in the years 1531, 1607, and 1682 ; and is expected to appear again in the year 1758 , and every 75 th year afterward. The fecond of them appeared in 1532 and 1661 , and may be expected to return in 1789, and every \(12 g t h\) vear afterward. The third, having laft appeared in 1680 , and its Period being no lefs than 575 years, cannot return until the year 2225 . This Comer, at its greateft diftance, is about eleven thoufand two hundred million of miles from the Sun; and at its leaft diftance from the Sun's center, which is 49,000 miles, is within lefs than a third part of the Sun's femidiameter from his furface. In that part of its Orbit which is neareft the Sun, it flies with the amazing fwiftnefs of 880,000 miles in a hour; and the Sun, as feen from it, appears a hundred degrees in breadth; confequently 40 thoufand times as large as he appears to us. The aftonifhing length that this Comet runs out into empty fpace, fuggefts to our minds an idea of the

They prove the Stars to teat im. mente dif. tances. Stars; of whofe Attractions all the Comets mult
keep clear, to return periodically, and go round the Sun; and it hews us allo, that the neareft Stars, which are probably thofe that feem the largeft, aie as big as our Sun, and of the fame nature with him; otherwife, they could not appear fo large and bright to us as they do at fuch an immenfe diftance.

Inferences drawn fiom the a inve phenomena.
94. The extreme heat, the denfe atmofphere, the grofs vapours, the chaotic flate of the Comets, feem at firft fight to indicate them altogether unfic for the purpoles of animal life, and a moft miferable habitation for rational beings; and therefore fome* are of opinion that they are fo many hells for tormensing the damned with perpetual viciffitudes of heat and cold. But when we confider, on the other hand, the infinite power and goodnels of the Deity ; thelatter inclining, the formertnabling him to make creatures fuited to all flates and circumftances; that matter exifts only for the fake of intelligent beings; and that wherever we find it, we always find it pregnant with life, or neceffarily fublervient thereto; the numberlefs fpecies, the aftonifhing diverfity of animals in earth, air, water, and even on other animals; every blade of grafs, every tender leaf, every natural fluid, (warming with life; and every one of thefe enjoying fuch gratifications as the nature and flate of each requires: when we refleft moreover that fome centuries ago, till experience undeceived us, a great part of the Earth was adjudged uninhabitable; the Torrid Zone, by reafon of exceflive hear, and the two Frigid Zones becaufe of their intolerable coll.; it feems highly probable, that fuch numerous and large maffes of durable matter as the Comets are, however unlike they be to our Earth, are not deftitute of beings capable of conremplating with wonder, and acknowledging with gratitude, the wifdom, fymmetry and beauty of the Creation;

\footnotetext{
- Mir. Whistox, in his Atronomical Principles of Religion.
}
which is more plainly to be obferved in their extenfive Tour through the Heavens, than in our more confined Circuit. If farther conjecture is permitted, may we not fuppofe them inftrumental in recruiting the expended fuel of the Sun; and fupplying the exhaufted moinure of the Planets? However difficule it may be, circumftanced as we are, to find out their particular deltination, this is an undoubted trurh, that wherever the Deity exerts his power, there he alfo manifetts his wifdom and goodnefs.
95. THE SOLAR SYSTEM, here defcribed, is not a late invention; for it was known and taught by the wife Samian philofopher PYthagoras, and others among the Ancients: butin latter times was loff, till the I 5 th century, when it was again reftored by the famous Polifb philofnpher, Nicholaus Copernicus, who was born at Thorn in the year 1473. In chis, he was followed by the greatelt mathematicians and philofophers thar have fince lived; as Kepler, Galileo, Descartes, Gassendus, and Sir Isaac Newton; the laft of whom has eftablifhed this Syftem on fuch an everlafting foundation of marhematical and phyfical demonftration, as can never be Paken: and none who underitand him can hefitate about it.
96. In the Ptolomean Sy/tem, the Earth was fuppofld to be fixed in the Center of the Univerfe;

This Syferm very ancient, and de. monfrable. and that the Moon, Mercury, Venus, the Sun,

The Ptolo mean Syltem abiurd. Mars, Jupiter, and Saturn, moved round the Earth: above the Planets, this Hyporhefis placed the Firmament of Srars, and then the two Chryftalline Spheres; all which were included in and received motion from the Primum Mobile, which conftantly revolved about the Earch in 24 hours from Eaft to Weft. But as this rude fcheme was found incapable of fanding the teft of art and obfervation, it was fuon rejected by all crue philofophers; notwithftanding the oppofition and violence of blind and zealous bigots.
'The Tysionie Sultem. parlutene, and partly talf.
97. The Tychonic Syfem fucceeded the Piolomean, but was never fo generally received. In this the Earch was fuppofed to ftand fill in the Center of the Univerfe or Firmament of Stars, and the Sun to revolve about it every 24 hours; the Planets, Mercury, Venus, Mars, Jupiter, and Saturn, going round the Sun in the times already mentioned. But fome of Туснo's difciples fuppofed the Earth to have a diurnal motion round its Axis, and the Sun with all the above Planets to go round the Earth in a year; the Planets moving round the Sun in the forefaid times. This hypothefis, being partly true and partly falfe, was embraced by few; and foon gave way to the only true and rational Syftem, reftored by Copernicus, and demonftrated by Sir Isaac Newton.
98. To bring the foregoing particulars into one point of view, with feveral others which follow, roncerning the periods, Diftances, Bulks, \(\mathcal{E}_{c}\). of the Planets, the following Table is inferted.

\section*{C H A P. III.}

The COPERNICAN SYSTEM derion foricied to be truc.

On mai:er
and, 3ntuon. 39. ATTER is of itlelf inaçive, and indifcan never put itfelf in motion; a body in motion can never llop or move flower of iffelf. Hence, when we fee a body in motion, we conclude fome other fubftance muft have given it that motion; when we fee a body fall from motiun to reft, we conclude fome other body or caufe fupt it.
100. All motion is naturally rectilineal. A bullet thrown by the hand, or difcharged from a cannon, would continue to move in the fame direction it received at firft, if no other power diverted its courfe. Therefore, when we fee a body moving in a curve of whatever kind, we conclude it mult be acted upon by two powers at leaft: one to put it in motion, and another drawing it off? from the rectilineal courfe which it would otherwife have continued to move in.

Gravity demonntrable.
101. The power by which bodies fall toward the Earth, is called Gravity or Attraation. By this power in the Earth it is, that all bodies, on whatever fide, fall in lines perpendicular to its furface. On oppofite parts of the Earth bodies fall in oppofite directions, all toward the center, where the whole force of gravity is, as it were, accumulated. By this power conflantly acting on bodies near the Earth, they are kept from leaving it altogether, and thofe on its furface, are kepe thereto on all fides, fo that they cannot fall from it. Bodies thrown with any obliquity are drawn by this power from a ftraight line into a curve, until they fall to the ground: the greater the force by which they are thrown, the greater is the diftance they are carried before they fall. If we fuppule a body carried feveral

Teveral miles above the Earth, and there projected in a horizoncal direction with fo great a velocity that it would move more than a femidiameter of the Earth in the time it would take to fall to the Larth by gravity; in that cafe, if there were no refifting medium in the way, the body would not fall to the Earrh at all, but continue to circulate round the Earth, keeping always the fame path; and returning to the point from whence it was projected with the fame velocity as at firt.
102. We find the Mioon moves round the Earth in an Orbit nearly circular. The Moon therefore

Projectile force demonfrable. mult be acted on by two powers or forces; one which would caufe her to move in a right line, anorher bendirg her motion from that line into a curve. This atractive power mutt be feated in the Earth, for there is no other body within the Moon's Orbit to draw her. The attractive power of the Earth therefore extends to the Moon; and in combination with her projectile force, caufes her to move round the Earth in the fame manner as the circulating bojy above fuppofed.
103. The Moons of Jupiter and Saturn are obferved to move round their primary Planiets : therefore there is an attractive power in thefe Planets . All the Planets move round the Sun, and refpect it for their center of motion: therefore the Sun muft be endowed with an attracting power, as well as the Earth and Planers. The like may be proved of the Comets. So that all the bodies or matter of the Solar Syftem, are poffefled of this power ; and perhaps fo is all matrer whatever.
104. As the Sun attraets the Planets with their Satellites, and the Earth the Moon, fo the Planets and Satellites re-attract the Sun, and the Moon the Earth; action and re-action being always equal. This is alfo confirmed by obfervation; for the Moon raifes tides in the ocean, and the Satellites and Planets difturb one another's motions.
105. Every particle of matter being poffeffed of an attracting power, the effect of the whole mult be in proportion to the number of attracting particles: that is, to the quantity of matter in the body. This is demonftrated from experiments on pendulums: for if they are of equal lengths, whatever their weights be, they always vibrate in equal times. Now, if one be double the weight of anocher, the force of gravity or attraction muft be double to make it ofcillate with the fame celerity: if one is thrice the weight or quantity of matter of another, it requires thrice the force of gravity to make it move with the fame celerity. Hence it is certain, that the power of gravity is always proportional to the quantity of matter in bodies, whatever their bulks or figures are.
106. Gravity alfo, like all other virtues or emanations, either drawing or impelling a body toward a center, decreafes as the fquare of the diftance increafes : that is, a body at twice the diftance ateracts another with only a fourth part of the force; at four times the diftance, with a fixteenth part of the force. This too is confirmed from obfervation, by comparing the diftance which the Moon falls in a minute from a right line rouching her Orbit, with the fpace which bodies near the Earth fall in the fame time: and allo by comparing the forces which retain Jupiter's Moons in their Orbits. This will be more fully explained in the feventh Chapter.

G avitarion anc projeclion exemplified.
107. The mutual attraction of bodies may be exemplified by a boat and a hhip on the water, tied by a rope. Let a man either in a hhip or boat pull the rope (it is the fame in effect at which end he pulls, for the rope will be equally ftretched throughout) the hip and boat will be drawn toward one another; but with this difference, that the boat will move as much fafter than the fhip, as the fhip is heavier than the boat. Suppofe the boat as heavy as the fhip, and they will draw one
snother equally (fecting afide the greater refiftance of the Water on the bigger body) and meet in the middle of the firft diftance between them. If the Ship is a thoufand or ten thoufand times heavier than the boat, the boat will be drawn a thoufand or ten thoufand times fafter than the fhip; and meet proportionably nearer the place from which the fhip fet out. Now, while one man pulls the rope, endeavouring to bring the fhip and boat together, let another man, in the boat, endeavour to row it off fideway, or at right angles to the rope; and the former, inftead of being able to draw the boat to the fhip, will find it enough for him to keep the boat from going further off; while the latter, endeavouring to row off the boat in a ftraight line, will, by means of the other's pulling is toward the fhip, row the boat round the fhip at the rope's length from her. Here the power employed to draw the fhip and boat to one another reprefents the mutual attraction of the Sun and Planers by which the Planets would fall freely toward the Sun with a quick motion; and would alfo in falling attract the Sun toward them. And the power employed to row off the boat reprefents the projectile force impreffed on the Planets at right angles, or nearly fo, to the Sun's attraction; by which means the Planets move round the Sun, and are kept from falling to it. On the other hand, if it be attempted to make a heavy hip go round a light boat, they will meet fooner than the fhip can get round; or the fhip will drag the boat after it.
108. Let the above principles be applied to the Sun and Earth; and they will evince, beyond a poffibility of doubt, that the Sun, not the Earth, is the center of the Syftem; and that the Earth moves round the Sun as the other Planets do.

For, if the Sun moves about the Earth, the Earth's attractive power mutt draw the Sun toward it from the line of projection, fo as to bend its
motion into a curve. But the Sun being at leaft 227 thoufand times as heavy as the Earth, by being fo much weightier as its quantity of matter is greater, it muft mové 227 thoufand times as flowly roward the Earth, as the Earth does toward the Sun; and confequently the Earth would fall to the Sun in a fhort time, if it had not a very ftrong projectile motion to carry it off. The Earth therefore, as well as every other Planet in the Syftem, muft have a rectilineal impulfe, to prevent its falling The abfore to the Sun. To fay, that gravitation retains all dity of fuprafing the Earth at reff. the other Planets in their Orbits without affecting the Earth, which is placed between the Orbics of Mars and Venus, is as abfurd as to fuppofe that fix cannon bullets might be projected upward to different heights in the Air, and that five of them fhould fall down to the ground; but the fixth, which is neither the higheft nor the loweft, fhould remain fufpended in the Air without falling, and the earth move round about it.
109. There is no fuch thing in nature as a heavy body moving round a light one as its center of motion. A pebble fatened to a mill-ftone by a ftring, may by an eafy impulfe be made to circulate round the mill-ftone: but no impulfe can make a mill-thone circulate round a loofe pebble, for the mill-ftone would go off, and carry the pebble along with it.
110. The Sun is fo immenfely bigger and heavier than the Earth *, that if he was moved out of his place, not only the Earth, but all the other Planets, if they were united into one mals, would be carried along with the Sun, as the pebble would be with the mill-ftone.
111. By confidering the law of gravitation, which takes place throughout the Solar Syitem, in another light, it will be evident that the Earch moves round the Sun in a year; and not the Sun round the Liarth. It has been thewn (§106) that * As will be demontirated in the Ninth Chapter.
the power of gravity decreafes as the fquare of the dittance increafes; and from this it follows with mathematical certainty, that when two or more bodies move round another as their center of motion, the fquares of their periodic times will be to one another in the fame proportion as the cubes of their diftances from the central body. This holds precifely with regard to the Planets round the Sun, and the Satellices round the Planets; the relative diffances of all which are well known. But, if we fuppofe the Sun to move round the Earth, and compare its period with the 'Moon's by the above rule, it will be found that the Sun would take no lefs than 173,510 days to move round the Earth, in which cale our year would be 475 times as long as it now is. To this we may add, that the afpects of increale and decreafe of \({ }^{\text {. }}\) the Planets, the times of their feeming to fand ftill, and to move direct and retrograde, anfwer precifely to the Earth's motion; but not at all to the Sun's, without introducing the moft abfurd and monftrous fuppofitions, which would deftroy all harmony, order, and fimplicity in the Syftem. Moreover, if the Earth be fuppofed to ftand ftill, and the Sars to revolve in free fpaces about the Earth in 24 hours, it is certain that the forces by which the Stars revolve in their Orbits are not directed to the Earth, but to the centers of the feveral Orbits; that is, of the feveral parallel Circles which the Stars on different fides of the Equator defcribe every day; and the like inferences may be drawn from the fuppofed diurnal motion of the Planets, fince they are never' in the Equinoctial

The harmony of the celeftial motions.
furd to imagine that thefe forces fhould increafe exactly in proportion to the diftances from this Axis; for that is an indication of an increafe to infinity; whereas the force of attraction is found to decreafe in receding from the fountain from whence it flows. But, the farther any Star is from the quiefcent Pole, the greater muft be the Orbit which it defcribes; and yet it appears to go round in the fame time as the nearelt Star to the Pole does. And if.we take into confideration the two-fold motion obferved in the Stars, one diurnal round the Axis of the Earch in 24 hours, and the other round the Axis of the Eclipric in 25920 years, § 251 , it would require an explication of fuch a perplexed compofition of forces, as could by no means be seconciled with any phyfical Theory.

Objections apainft the Earth's inution anfwered.
112. There is but one objection of any weight that can be made againft the Earth's motion round the Sun, which is, that in oppofite points of the Earth's Orbir, its Axis, which always keeps a parallel direction, would point to different fixed Stars; which is not found to be fact. But this objection is eafily removed, by confidering the immenfe diftance of the Stars in relpest of the diameter of the Earth's Orbit; the latter being no more than a point when compared to the former. If we lay a ruler on the fide of a table, and along the edge of the ruler view the top of a fire at ten miles diftance, then lay the ruler on the oppofite fide of the table in a parallel fituation to what it had before, and the fpire will fill appear along the edge of the ruler; becaufe our eyes, even when affifted by the beft inftruments, are incapable of diftinguifing fo finall a change at to grear a diftance.
113. Dr. Bradley found by a long feries of the mof accurate oblervations, that there is a fmall apparent motion of the fixed Stars, occafioned by the aberration of their light, and fo exactly anfwering to
an annual motion of the Earth, as evinces the fame, even to a mathematical demonftration. Thofe who are qualified to read the Doctor's modert Account of this grear difcovery, may confult the Pbi lofopbical Tranfactions, \(\mathrm{N}^{\circ}\) 406. Or they may find it created of at large by Drs. Smith*, Long \(\dagger\), Desaguliers \(\ddagger\), Rutherfurth \(\|\), Mr. Maclaurin, Mr. Simpson ff, and M.de la Caille**.
114. It is true that the Sun feems to change his place daily, fo as to make a tour round the ftarry Heavens in a year. But whether the Sun or Earth

Why the Sun appears to change his place. moves, this appearance will be the fame; for, when the Earth is in any part of the Heavens, the Sun will appear in the oppofite. And therefore this appearance can be no objection againft the motion of the Earth.
115. It is well known to every perfon who has failed on fmooth water, or been carried by a ftream in a calm, that, however faft the veffel goes, he does not feel its progreffive motion. The motion of the Earch is incomparably more fmooth and uniform than that of a hip, or any machine made and moved by human art: and therefore it is not to be imagined that we can feel its motion.
116. We find that the Sun, and thofe Planets on which there are vifible fpots, turn round their Axes: for the fpots move regularly over their

The Earth's motion on i:s Axis demonftrated. Difestt. From hence we may reafonably conclude, that the other Planers, on which we fee no fpots, and the Earth, which is likewife a Planer, have fuch rotations. Bur being incapable of leaving the Earth, and viewing it at a diftance, and its rotation being fmooth and uniform, we can neither

\footnotetext{
- Optics, B. I. §1178.
\(\ddagger\) Philofophy, Vol. I. p. 401.
\(\uparrow\) Aftronomy, B. II. \(\$ 838\). II Account of Sir Ilaac Newton's Pbilofophical Difgoveries, B. 111. c. 2. §3.
r| Mathemat. Effays, P. 1. ** Elemens d'Afronomis, \(\$ 381\).
tr- The face of the Sun, Mcon, or any Planes, as it appears to the eye, is called its Difs.
}
fee it move on its Axis as we do the Planets, nor feel ourfelves affected by its motion. Yet'there is one effect of fuch a motion, which will enable us to judge with certainty whether the Earth revolves on its Axis or not. All Globes which do not turn round their \(A\) xes will be perfect fpheres, on account of the equality of the weight of bodies on their furfaces; efpecially of the fluid parts. But all Globes which turn on their Axes will be oblate fpheriods; that is, their furfaces will be higher or farther from the center in the equatorial than in the polar Regions; for, as the equatorial parts move quickeft, they will recede fartheft from the Axis of motion, and enlarge the equatorial diameter. That our Earth is really of this figure, is demonftrable from the unequal vibrations of a pendulum, and the unequal lengths of degrees in different latitudes. Since then the Earth is higher at the Equator than at the Poles, the fea, which naturally runs downward, or toward the places which are neareft the center, would run toward the polar Regions, and leave the equatorial parts dry, if the centrifugal force of thefe parts by which the waters were carried thither did not keep them from returning. The Earth's equatorial diameter is 36 miles longer than its Axis.

All bodies heavier at the Poles than chey would be at the Equator.
117. Bodies near the Poles are heavier than thofe toward the Equator, becaufe they are nearer the Earth's center, where the whole force of the Earth's attraction is accumulated. They are alfo heavier, becaufe theircentrifugal force is lefs, on account of their diurnal motion being nower. For both thefereafons, bodies carried from the Poles toward the Equator, gradually lofe of their weight. Experiments prove that a pendulum, which vibrates feconds near the Pules, vibrates nower near the Equator, which hows, that it is lighter or lefs attracted there. To make it of cillate in the fame t time, it is found neceffary to diminifh its length. By comparing the different lengths of pendulums fwinging
fwinging feconds at the Equator and at London, it is found that a pendulum mult be \(2 \frac{1}{180 \%}\) ? lines florter at the Equator than at the Poles. A line is a twelfth part of an inch.
118. If the Earth turnedrround its Axis in 84 minutes 43 feconds, the centrifugal force would be equal to the power of gravity at the Equator; and

How they might lufe all their weight. all bodies there would entirely lofe their weight. If the Earth revolved quicker, they would all fy off, and leave it.
119. A perfon on the Earth can no more be fenfible of its undifturbed motion on its Axis, than one in the cabin of a Chip on fmooth water can be fenfible of the fhip's motion when it turns gently and uniformly round. It is therefore no argument againft the Earth's diurnal motion, that we do not feel it: nor is the apparent revolutions of the celeftial bodies every day a proof of the reality of thefe motions; for whether we or they revolve, the appearance is the very fane. A perfon looking through the cavin-windows of a fhip as Arongly fancies the objects on land to go round when the fhip turns, as if they were actually in motion.
120. If we could tranflate ourfelves from Planet to Planet, we fhould fill find that the Stars would appear of the fame magnitudes, and at the fame diftances from each other, as they do to us here: becaufe the width of the remotef Planet's Orbit bears no fenfible proportion to the diftance of the Stars. But then, the Heavens would feem to revolve about very different Axes; and confequently, thofe quiefcent points, which are our Poles in the Heavens, would feem to revolve about ocher points, which, though apparently in motion as feen from the Earth, would be at reft as feen from any other Planet. Thus the Axis of Venus, which lies almoft at right Angles to the Axis of the Earth, would have its motionlefs Poles in two oppofice points of the Heavens lying almoft in our Equi-
\[
\text { E } 3 \text { noctial, }
\]

The Earth's motion cannot be felt.
noctial, where the motion appears quickeft, becaure it is feemingly performed in the greatef Circle. And the very Poles, which are at reft to us, have the quickeft motion of all as feen from Venus. To Mars and Jupiter the Heavens appear to turn round with very different velocities on the fame Axis, whofe Poles are about \(23 \frac{1}{2}\) degrees from ours. Were we on Jupiter, we fhould be at firft amazed at the rapid motion of the Heavens; the Sun and Stars going round in 9 hours 56 minutes. Could we go from thence to Venus, we fhould be as much furprifed at the flownefs of the heavenly motions; the Sun going but once round in 584 hours, and the Stars in 540. And could we go from Venus to the Moon, we fhould fee the Heavens turn round with a yet flower motion; the Sun in 708 hours, the Stars in 655. As it is impoffible thefe various circumvolutions in fuch different times, and on fuch different Axes, can be real, fo it is unrea. fonable to fuppofe the Heavens to revolve about our Earth more than it does about any other Planet. When we reflect on the vaft diftance of the fixed Stars, to which \(162,000,000\) of miles, the diameter of the Earth's Orbir, is but a point, we are filled with amazement at the immenfity of their diftance. But if we try to frame an idea of the extreme rapidity with which the Stars muft move, if they move round the Earth in 24 hours, the thought becomes fo much too big for our imagination, that we can no more conceive it than we do infinity or eternity. If the Sun was to go round the Earth in 24 hours, he muft travel upward of 300,000 miles in a minute : but the Stars being at leaft 400, COO times as far from the Sun as the Sun is from us, thoie about the Equator muft move 400,000 times as quick. And all this to ferve no other purpofe than what can be as fully and much more fimply obrained by the Earch's turning round caftward, as on an Axis, every \(2+\) hours, caufing thereby an apparent
diurnal motion of the Sun weftward, and bringing about the alternate returns of day and night.
121. As to the common objections againt the Earth's motion on its Axis, they are all eafily anfiwered and fet afide. That it may turn without being feen or felt by us to do fo, has been already

\section*{Ohjętions} fhewn, § 119 . But fome are apt to imagine that if the Earth turns eaft ward (as it certainly does, if it turns at all) a ball fired perpendicularly upward in the air mult fall confiderably weftward of the place it was projected from. The objection, which at firft feems to have fome weight, will be found to have none at all, when we confider that the gun and ball partake of the Earth's motion; and therefore the ball being carried forward with the air as quick as the Earth and air turn, mult fall down on the fame place. A fone let fall from the top of a main-maft, if it meets with no obftacle, falls on the deck as near the fout of the maft when the fhip fails as when it does not. If an inverted bottle, full of liquor, be hung up to the cieling of the cabin, and a fmall hole be made in the cork to let the liquor drop through on the floor, the drops will fall juft as far forward on the floor when the fhip fails as when it is at reft. And gnats or fies can as ealily dance among one another in a moving cabin as in a fixed chamber. As for thofe feriprure expreffions which feem to contradict the Earth's motion, the following reply may be made to them all: It is plain from many inftances, that the Scriptures were never intended to inftruct us in Philofophy or Aftronomy; and therefore, on thofe fubjects, expreffions are not always to be taken in the literal fenfe; bur for the moft part as accommodate 1 to the cominon apprehenfions of mank i.ad. Men of fenle in all ages, when not treating of the fiences purpofely, have followed this mectod: and it would be in vain to follow any other in adtdrefing ourfelves to the vulgar, or bulk of any
community. Mofes calls the Moon A GREAT L.UMINARY (as it is in the Hebrew) as well as the Sun: but the Monn is known to be an opaque body, and the fmalleft that Aftronomers have ubferved in the Heavens; and fhines upon us not by any inherent light of its own, but by reflecting the light of the Sun. Mofes might know this, but had he tuld the Ifraelites fo, they would have fared at him; and confidered him rather as a madman, than as a perfon commiffioned by the Almighty to be their leader.

\section*{C H A P. IV.}

The Pbenomena of the Heavens as feen froin different Parts of the Earth.

We are kep: 122. 5 E are kept to the Earth's furface on to the Earth by gravity. attraction; which, laying hold of all bodies according to their denfities or quantities of matter, without regard to their bulks, conftitutes what we call their weight. And having the fky over our heads, go where we will, and our feet toward the center of the Earth, we call it up over nur heads, and down under our feet: although the fame right line which is down to us, if continued through and beyond the oppofite fide of the Earth, would be up to plate in. the inhabitants on the oppofite fide. For, the in Fig. I. habitants \(n, i, e, m, s, o, q, l\), fand with their feet toward the Earth's center \(C\); and have the fame figure of fky \(N, I, E, M, S, O, Q, L\), over their heads. Therefore, the point \(S\) is as direaly upward to the inhabitant \(s\) on the South Pole, as \(N\) is to the inhabitant \(n\) on the North Pule: fo is \(E\) to the inhabitant e fuppoled to be on the North end of Peru; and 2 to the oppofite inhabitant \(q\) on the middie of the ifland Sumatra. I: ach of there obfervers is furprifed that his oppofite or Antipode can ftand with his head hanging downward. But let

either go to the other, and he will tell him that he PLate in ftood as upright and firm on the place where he was, as he now ftands where he is. To all thefe obfervers the Sun, Moon, and Stars, fiem to turn round the points \(N\) and \(S\), as the Poles of the fixed Axis \(N C S\); becaule the Earth does really turn round the mathematical line \(n C s\) as round an Axis, of which \(n\) is the Nurth Pole, and s the Sourh Pole. The inhabitant \(U\) (Fig. II.) affirms, that he is on the uppermoft fide of the Earth, and wonders how another at \(L\) can ftand on the undermoft fide with his head hanging downwards. But \(U\) in the mean time forgets that in twelve hours time he will be carried half round with the Earth, and then be in the very fituation that \(L\) now is, although as far from him as before. And yet, when \(U\) comes there, he will find no difference as to hisminner of ftanding; only he will fee the oppofite half of the Heavens, and imagine the Heavens to have gone half round the Earth.
123. When we fee a Globe hung up in a room, we cannot help imagining it to have an upper and an under fide, and immediately form a like idea of che Earth; from whence we conclude, that it is

How our Earth might have an up. per and an under fide. as impoffible for people to fand on the under fide of the Earth, as for pebbles to lie on the under fide of a common Globe, which inftantly fall down from it to the ground; and well they may, becaufe the artraction of the larth being greater than the attraction of the Globe, pulls them away. Juft fo would be the cafe w th our Earth, if it were placed near a Glube much bigger than iffelf, fuch as Jupiter: for then it would really have an upper and an under fite with selpect so that large Globe; which, by its Aturaction, would pull away every thing froin the fide of : he Earth next to it; and only thofe on its furtace at the oppofite fide could remain uponit. But there is no larger Globe near enough our Earch to overcome its central

Plateri. attraction; and therefore it has no fuch thing as an upper and an under fide; for all bodies on or near its furface, even to the Moon, gravitate toward its cenier.
124. Let any man imagine that the Earth and every thing but himfelf is taken away, and he left alone in the midft of indefinite fpace; he could then have no idea of \(u\) p or down; and were his pockets full of gold, he might take the pieces one by one, and throw them away on all fides of him, without any danger of lofing them; for the attraction of his body would bring them all back by the way they went, and be would be doren to every one of them. But then, if a Sun or any other large body were created, and placed in any part of Space feveral millions of miles from him, he would be attracted toward it, and could not fave himfelf from falling down to it.

Fig.

Half of the Heavens vi frole to an imhabirant on any part of thel゙asth.
125. The Earth's bulk is but a point, as that at C, compared to the Heavens; and therefore every inhabitant upon it, let him be where he will, as at \(n, c, m, s, \& c c\). fees half of the Heavens. The inhabitant \(n\), on the North Pole of the Earth, conftantly fees the Hemifphere \(E N \underset{⺀}{ }\); and having the North Pole \(N\) of the Heavens jult over his head, his Horizon * coincides with the Celeftial Equator EC Q. Therefore all the Stars in the Northern Hemilphere \(E N Q\), between the Equator and North Pole, appear to turn round the line NC, moving parallel to the Horizon. The Equatorial Stars keep in the Horizon, and all thofe in the Southern Hemifphere ESQ are invifible. The like Phenomena are feen by the obferver \(s\) on the Sourh Pole, with refpect to the Hemifiphere ESQ, and to him the opporite Hemifphere is always invifible. Hence, under either Pole, only one

\footnotetext{
* The utmof limit of a perfon's view, where the Sky feems to tonch the Earth all around, is called his Horizun; which flifis as the perfon changes his place.
}
half of the Heavens is feen; for thofe parts which are once vifible never fet, and thofe which arennce invifible never rife. But the Ecliptic \(\Upsilon C X\), or Orbit which the Sun appears to defcribe once ayear by the Earth's annual motion, has the half \(Y C\) conttantly above the Horizon ECQ of the North Pole \(n\); and the other half \(C X\) always below it. Therefore while the Sun defcribes the northern half \(\Upsilon C\) of the Ecliptic, he neither fets to the North

Phenomena at the Poles Pole nor rifes to the South; and while he defcribes the fouthern half \(C X\), he neither fets to the South Pole, nor rifes to the North. The fame things are true with refpect to the Moon; only with this difference, that as the Sun defcribes the Ecliptic but once a-year, he is for half that time vifible to each Pole in its turn, and as long invifible; but as the Moon goes round the Ecliptic in 27 days 8 hours, The is cinly vifible for 13 days 16 hours, and as long invifible to each. Pole by turns. All the Planets likewife rife and fet to the Poles, becaufe their Orbits are cut obliquely in halves by the Horizon of the Poles. When the Sun (in his apparent way from \(X\)) arrives at \(C\), which is on the \(20: \mathrm{h}\) of March, he is juft rifing to an obferver at \(n\) on the North Pole, and fetting to another at son the South Yole. From \(C\) he rifes higher and higher in every apparent Diurnal revolution, till he comes to the higheft point of the Ecliptic \(y\), on the 2 It of fune, and then he is at his greateft altitude, which is \(23 \frac{1}{2}\) degrees, or the \(\operatorname{Arc} E y\), equal to his greatert north declination; and from thence he feems to defcend gradually in every apparent Circumvolu. tion, till he fers at \(C\) on the 23 d of Septerizber; and then he goes to exhibit the like Appearances at the Souch l'ole for the other half of the year. Hence the Sun's apparent motion round the Earth is not in paraliel Circl-s, but in Spirals; fuch as might be reperented by a thread wound round a Globe froin l'ropic to Tropic; the Spirals being at fome diftance from one another about the Equator, and gradually

PLATEII.

Phenomena at the Equatur.

Fig. I.
gradually nearer to each other as they approach toward the Tropics.
126. If the oblerver be any where on the Terreftrial Equator e \(C q\), as fuppofe at \(e\), he is in the plane of the Celeftial Equator; or under the Equinoctial ECQ; and the Axis of the Earth \(n C s\) is coincicient with the plane of his Horizon, extended out to \(N\) and \(S\), the North and South Poles of the Heavens. As the Earth turns round the line \(N C S\), the whole Heavens MOL l feem to turn round the fame line, but the contrary way. It is plain that this obferver has the Celeftial Poles corftantly in his Horizon, and that his Horizon cuts the Diurnal paths of all the Celeftial bodies perpendicularly, and in halves. Therefore the Sun, Planets, and Stars, rife every day, and afcend perpendicularly above the Horizon for fix hours, and palling over the Meridian, defcend in the fame manner for the fix following hours; then fet in the Horizon, and continue twelve hours below it. Confequently at the Equator the days and nights are equally long throughout the year. When the obferver is in the fituation e, he fees the Hemifphere \(S E N\); but in twelve hours after, he is carried half round the Earth's Axis to \(q\), and then the Hemifphere \(S Q N\) becomes vifible to him; and \(S E N\) difappears. Thus we find, that to an obferver at either of the Poles one half of the Sky is always vifible, and the other half never feen; but to an obferver on the Equator the whole Sky is feen every 24 hours.

The Figure here referred to, reprefents a Celeftial globe of glafs, having a Terreftrial Globe within it: after the manner of the Glats Sphere invented by my generous friend Dr. Long, Lowndes's Profeffor of Aftronomy in Cambridge.

Remark,
127. If a Globe be held fidewife to the eye, at fome diffance, and fo that neither of is Poles can be feen, the Equator ECQ , and all Circles parallel to it, as \(D L, y z i\), abX, \(M O, \& c\). will appear to be Atraight

Atraight lines, as projected in this Figure; which is requifite to be mentioned here, becaufe we fhall have occafion to call them Circles in the following Articles of this Chapter*.
128. Let us now fuppofe that the obferver has gone from the Equatore toward the North Pole n, and that he fops at \(i\), from which place he then

Phenomena between the Equator and सcles. fees the Hemilphere \(M E / N L\); his Horizon \(M C L\) having fhifted as many Degrees \(\dagger\) from the Celeftial Poles \(N\) and \(S\), as he has travelled from under the Equinoctial \(E\). And as the Heavens feem conftantly to turn round the line \(N C S\) as an Axis, all thofe Stars which are not fo many degrees from the North Pole \(N\) as the obferver is from the Equinoctial, namely, the Stars north of the dotted parallel \(D L\), never fet below the Horizon; and thofe which are fouth of the dotted parallel \(M O\) never rife above it. Hence the former of there two parallel Circles is called the Circle of perpetual Apparitioiz, and the latter the Circle of perpetual Occultation: but all the Stars between thefe two Circles rife and fet every day. Let us imagine many Circles to be drawn berween thefe two, and parallel to them; thore which are on the north fide of the Equinoctial will be unequally cur by the Horizon MCL, having larger portions above the Horizon than below it; and the more fo, as they are nearer to the Circle of perpetual Apparition; but the reverfe happens to thofe on the fouth fide of the Equinoctial, while the Equinoctial is divided in two equal parts by the Horizon. Hence, by the apparent turning of the Heavens, the northern Stars defcribe greater Arcs or Portions of Circles above the Horizon than below it; and the greater, as they are farther from the Equinoctial toward the Circle of perpetual Apparition; while the con-

\footnotetext{
* The Plane of a Circle, or a thin circular Plate, being turned edg?wife to the eye, appears to be a fraight line. turned edgawife to the eye, appears to be a \(A\)
\(+A\) Degrec is the 360 th part of a Circle.
}

The Circles of perpetual Apparition and Occultatiou.
trary happens to all Stars fouth of the Equinoctial : but thofe upon it deferibe equal Arcs both above and below the Horizon, and therefore they are juft as long above as below it.
129. An obferver on the Equator has no Circle of perpetual Apparition or Occultation, becaufe all the Stars, together with the Sun and Moon, rife and fet to him every day. Bur, as a bare view of the Figure is fufficient to fhew that thele two Circles \(D L\) and \(M O\) are jult as far from the Poles \(N\) and \(S\) as the obferver at \(i\) (or one oppofite to him at 0) is from the Equator \(E C Q\); it is plain, that if an obferver begins to travel from the Equator toward either Pole, his Circle of perpetual Apparition rifes from that Pole as from a Point, and his Circle of perpetual Occultation from the orher. As the oblerver advances toward the nearer Pole, thefe two Circles enlarge their diameters, and come nearer one another, until he comes to the Pole; and then they meet and coincide in the Equinoctial. On different fides of the Equator, to obfervers at equal diftances from it, the Circle of perpetual Apparition to one is the Circle of perpetual Occultation to the other.

Why the Starsalways defcribe the fame pardfel of mir sion, and the \$una diffrent.
130. Becaufe the Stars never vary their diftances from the Equinoctial, fo as to be fenfible in an age, the lengths of their diurnal and nocturnal Arcs are aiways the fame to the fame places on the Earth. Bur as the Earch goes round the Sun every year in the Ecliptic, one half of which is on the north fite of the Equinoetial, and the other half on its fouth flide, the Sun appears to change his place every day, fo as to go once round the Circle YCX every year, §114. Therefore while the Sun appears to advance northward, from having defcribed the parailel abX touching the Ecliptic in \(X\), the days continually lengthen and the nighes morsen, until he comes to \(y\) and deferibes the 1 aralle \(y z x\), when the days are at the longeft and the nighes at
the thortef: for then, as the Sun goes no farther PLATEIT. northward, the greateft portion that is poffible of the diurnal Arc \(y z\) is above the Horizon of the inhabitant \(i\); and the fmallett portion \(z x\) below it. As the Sun declines fouthward from \(y\), he defcribes fmaller diurnal and greater nocturnal Arcs, or Portions of Circles, every day; which caufes the days to fhorten and nights to lengthen, until he arrives again at the Parallel abX; which having only the fmall part \(a b\) above the Horizon \(M C L\), and the great part \(b X\) below it, the days are at the fhorteft and the nights at the longeft : becaufe the Sunrecedes no farther fouth, but returns norchward as before. It is eafy to fee that the Sun mult be in the Equinoctial \(E C Q\) twice every year, and then the days and nights are equally long; that is, 12 hours each. Thefe hints ferve at prefent to give an idea of fome of the Appearances refulting from the motions of the Earth; which will be more particularly defcribed in the tenth Chapter.
131. To an obferver at either Pole, the Horizon and Equinoctial are coincident; and the Sun and Stars feem to move parallel to the Horizon: therefore fuch an obferver is faid to have a parallel Fig. I. Parallel, Oblique, and Righe Sphere, what. pofition of the Sphere. To an oblerver any where berween either Pole and Equator, the Paralleds defcribed by the Sun and Stars are cut obliquely by the Horizon, and therefore he is faid to have an oblique pofition of the Sphere. To an obferver any where on the Equator, the Parallels of Morion, defcribed by the Sun and Stars, are cut perpendicularly, or at Right Angles, by the Horizon; and therefore he is faid to have a right pofition of the Sphere. And thefe three are all chie different ways that the Sphere can be pofited to all people on the Earth.

\section*{CHAP. V.}

The Pbenomena of the Heavens as feen from different Parts of the Solar Syftem.
132. CO vafly great is the diffance of the ftarry Heavens, that if viewed from any part of the Solar Syltem, or even many millions of miles beyond it, the appearance would be the very fame to us. The Sun and Stars would all feem to be fixed on one concave furface, of which the fpectator's eye would be the center. But the Planets, being nuch nearer' than the Stars, their appearances will vary confiderably with the Place from which they are viewed.
133. If the fpectator is at reft without their Drbits, the Planets will feem to be at the fame diftance as the Stars; but continually changing their places with refpect to the Srars, and to one another: affuming various phafes of increafe and decreare like the Moon; and, notwichttanding their regular motions about the Sun, will fometimes appear to move quicker, fometimes flower, be as often to the weft as to the eaft of the Sun; and at their greateft diftances feem quite ftationary. The duration, extent, and diftance, of thofe points in the Heavens where thefe digreffiuns begin and end, would be more or lefs, according to the refpective diftances of the feveral Planets from the Sun: but in the fame Planet they would continue invariably the fame at all times; like pendulums of unequal lengths of cillating together, the fhorter move quick and go over a finall ipace, the longer move flow and go over a large fpace. If the obferver is at reft within the Orbits of the Planets but not near the common center, their apparent motions will be irregular, bur lefs fo than in the former cafe. Each of the reveral Planets will appear bigger and lefs by turns, as they approach nearer
nearer to or recede farther from the obferver: the neareft varying moft in cheir fize. They will alfo move quicker or flower with regard to the fixed Stars, but will never be retrograde or ftationary.
134. If an obferver in motion views the Heavens, the fame apparent irregularities will be obferved, but with fome variation refulting from his own motion. If he is on a Planet which has a rotation on its Axis, not being fenfible of his own motion, he will imagine the whole Heavens, Sun, Planets, and Stars, to revolve about him in the fame time that his Planet turns round, but the contrary way; and will not be eafily convinced of the deception. If his Planet moves round the Sun, the fame irregularities and afpects as above-mentioned will appear in the motions of the other Planets; and the Sun will feem to move among the fixed Stars or Signs, in an oppofite direction to that which his Planet moves in, changing its place every day as he does. In a word, whether our obferver be in motion or at reft, whether within or without the Orbits of the Planets, their motions will feem irregular, intricate, and perplexed, unlefs he is in the center of the Syftem; and from thence, the moft beautiful order and harmony will be feen by him.
135. The Sun being the center of all the Planets The Sun's motions, the only place from which their motions could be truly feen, is the Sun's center; where the obferver being fuppofed not to turn round with the Sun, (which, in this cafe, we mult imagine to be a tranfparent body,) would fee all the Stars at reft, center the only point from which the truemo= tions and places of the and feemingly equidiftant from hím. To fuch an Planets obferver, the Planets would appear to move among could be fecn. the fixed Stars, in a fimple, regular, and uniform manner: only, that as in equal times they defcribe equal Areas, they would defcribe fpaces fomewhat unequal, becaufe they move in elliptic Orbits, § \(155^{\circ}\). Their motions would alfo appear to be what they are in fact, the fame way round the Heavens; in
paths which crofs at fmall Angles in different parts of the Heavens, and then feparate a little from one another, \(\$ 20\). So that, if the Solar Aftronomer fhould make the Path or Orbit of any Planet a ftandard, and confider it as having no obliquity, \$201, he would judge the paths of all the reft to be inclined to it; each Planet having one half of its path on one fide, and the other half on the oppofite fide of the ftandard Path or Orbit. And if he fhould ever fee all the Planets flart from a conjunction with each other*, Mercury would move fo much fatter than Venus, as to overtake her again (though not in the fame point of the Heavens) in a quanticy of time almof equal to 145 of our days and nights, or, as we commonly call them, Natural Days, which include both the days and nights: Venus would move fo much fafter than the Earth, as to overtake it again in 585 natural days: the Earth fo much fafter than Mars', as to overtake him again in 778 fuch days: Mars fo much fafter than Jupiter, as to overtake him again in 817 fuch days: and Jupiter fo much fafter than Saturn, as to overtake him again im 7236 days, all of our time.

The judg. ment chat a folar Aftronomer wuuld probably make concerning the dillances and bulks of the Plancts.
136. But as our folar Aftronomer could have no idea of meafuring the courfes of the Planets by our days, he would probably take the period of Mercury, which is the quickett moving Planet, for a meafure to compare the periods of the others by. As all the Stars would appear quiefcent to him, he would never think that they had any dependance upon the Sun; but would naturally imagine that the Planets have, becaufe they move round the Sun. And it is by no means improbable, that he
* Here we do not mean fuch a conjunction, as that the nearer Planet fhould bide all the reft from the obferver's fight; (for that would be impolfible, unlefs the interfections of all their Orhits were coincident, which they are not. Sec § 21.) but when they were all in a line crofing the flandard Orbit at Kight Angles.
．

would conclude thofe Planets, whofe Periods are quickeft, to move in Orbits proportionably lefs than thofe do which make nower circuits. But being deftitute of a meehod for finding their Parallaxes, or more properly fpeaking, as they could have no Parallax to him, he could never know any thing of their real diftances or magnitudes. Their relative diftances he might perhaps guefs at by their periods, and from thence infer fornething of truth concerning their relative bulks, by comparing their apparent bulks with one another. For example, Jupiter appearing bigger to him than Mars, he would conclude it to be much bigger in fact; becaufe it appears fo, and muft be farther from him, on account of its longer period. Mercury and the Earth would feem much of the fame bulk; but by comparing its period with the Earth's, he would conclude that the Earth is much farther from him than Mercury, and confequently that it muft be really bigger, though apparently of the fame bulk; and fo of the reft. And as each Planet would appear formewhat bigger in one part of its Orbic than in the oppofite, and to move quickeft when it feems biggett, the obferver would be at no lofs to conclude that all the Planets move in Orbits, of which the Sun is not precifely in the center.
137. The apparent magnitudes of the Planets continually change as feen from the Earth, which demonftrates that they approach nearer to it, and recede farther from it by turns. From thefe Phenomena, and their apparent motions among the

The Planem
tarymotions very irregular as feen from the Eaith. Stars, they feem to defcribe looped curves which never return into themfelves, Venus's path excepted. And if we were to trace out all their apparent paths, and put the figures of them together in one diagram, they would appear fo anomalous and confused, that no man in his fenfes could believe them to be reprefentations of their real paths; but would immediately conclude, that fuch appa-

\section*{Thofe of} Mercury and \(V\) enus reprefented.
rent irregularities muft be owing to fome Optic illufions. And after a good deal of enquiry, he might perhaps be at a lufs to find out the true caule of thefe irregularities; efpecially if he were one of thofe who would rather, with the greateft juftice, charge frail man with ignorance, than the Almighty with being the author of fuch confufion.

I 38. Dr. Long, in his firt volume of Aftronomy, has given us figures of the apparent paths of all the Planets, feparately from Cassini; and on feeing them I firt thought of attempting to trace fome of them by a machine * that fhews the motions of the Sun, Mercury, and Venus, the Earth, and Moon, according to the Copernican \(y\) yfem. Having taken off the Sun, Mercury, Venus, I put black-lead pencils in their places, with the points turned upward; and fixed a circular ftreet of pafte-board fo, that the Earcli kept conftantly under its center in going round the Sun; and the pafte-board kept its parallelifm. Then, preffing gently with one hand upon the patte-board to make it touch the three pencils, with the other hand I turned the winch that moves the whole machinery: and as the Earth, together with the pencils in the places of Mercury
Tig. I. and Venus, had their proper motions sound the Sun's pencil, which kept at reft in the center of the machine, all the three pencils defcribed a diagram, from which the firft Figure of the third Plate is truly copied in a fmaller fize. As the Earth moved round the Sun, the Sun's pencil defrribed the dotted Circle of Months, whilt Mercury's pencil drew the curve with the greatelt number of loops, and Venus's that with the feweft. In their inferior conjunctions they come as much nearer the Earth, or within the Circle of the Sun's apparent motion round the Heavens, as they go beyond it in their fuperior conjunctions. On each fide of the loops they appear fationary: in that part of

\footnotetext{
* The Orrery fronting the 'Title-Page.
}
each Ioop next the Earth retrograde; and in ail
plate III. she reft of their paths direct.

If Caffini's Figures of the paths of the Sun, Mercury, and Venus, were put together, the Figure as above traced out would be exactly like them. It reprefents the Sun's apparent motion round the Ecliptic, which is the fame every year; Mercury's motion for feven years; and Venus's for eight; in which time Mercury's parh makes 23 loops, croffing julelf fo many times, and Venus's only five. In eight years Venus falls fo nearly into the fame apparent path again, as to deviate very little from it in fome ages; but in what number of years Mercury and the reft of the Planets would defcribe the fame vifible paths over again, I cannot at prefent determine. Having finifhed the above Figure of the paths of Mercury and Venus, I put the Ecliptic round them as in the Doctor's Book; and added the dotted lines from the Earth to the Ecliptic for Shewing Mercury's apparent or geocentric motion therein for one year; in which time his path makes three loops, and goes on a little farther; which Shews that he has three inferior, and as many fuperior conjunctions with the Sun in that time; and alfo that he is fix times fationary, and thrice retrograde. Let us now trace his motion for one year in the Figure.

Suppofe Mercury to be fetting out from \(A\) toward \(B\) (between the Earth and left-hand corner of the Plate) and as feen from the Earth, his motion Fig. I. will then be direct, or according to the order of the Signs. But when he comes to \(B\), he appears to ftand fill in the 23 d degree of \(m\) at \(F\), as fhewn by the line \(B F\). While he goes from \(B\) to \(C\), the line \(B F\), fuppofed to move with him, goes backward from \(F\) to \(E\), or contrary to the order of Signs; and when he is at \(C\), he appears ftationary at \(\mathscr{E}\); having gone back \(11 \frac{1}{2}\) degrees. Now, Luppofe him fationary on the firft of Fanuary at \(C\), on the Ioth of that month he will appear in the Heasens
as at 20 , near \(F\); on the 2oth he will be feen as at \(G\); on the 3 Ift at \(H\); on the ioth of February at \(I\); on the 20 th at \(K\); and on the 28 th at \(L\); as che dotted lines fhew, which are drawn through every tenth day's motion in his looped path, and continued to the Ecl.ptic. On the Ioth of March he appears at \(M\); on the 20th at \(N\); and on the 31 if at \(O\). On the roth of April he appears ftationary at \(P\); on the 2oth he feems to have gone back again to \(O\); and on the zoth he appears ftationary at 2 , having gone back \(11 \frac{1}{2}\) degrees. Thus Mercury feems to go forward 4 Signs in Degrees, or 131 Degrees; and to go back only 11 or 12 Degrees, at a mean rate. From the 3 cth of April to the roth of May, he feems to move from 2 to \(R\); and on the 20th he is feen at \(S\), going forward in the fame manner again, according to the order of letters; and backward when they go back; which it is ncedlefs to explain any farther, as the reader can trace him out fo cafily, through the reft of the year. The fame appearances happen in Venus's motion; but as fle moves ीower than Merrcury, there are longer intervals of time between them.

Having already, §120, given fome account of the apparent diurnal motions of the Heavens as feen from the different Planets, we fhall not trouble the reader any more with that fubject.

\section*{C H A P. VI.}

The Ptolemean Syfem refuted. The Motions and Pbafes of Mercury and Venus explained.
139. HHE Tychonic Syfem, §97, being fufficiently refuted by the rogth Article, we fhall fay nothing more about it.
140. The Ptolemean Syfem, \(\S \varsigma 6\), which afferts the Earth to be at reft in the Center of the Univerfe, and all the Planets with the Sun and Stars to move round \(i r\), is evidently falle and abfurd. For

For if this hypothefis were true, Mercury and Venus could never be hid behind the Sun, as their Orbits are included within the Sun's: and again, thefe two Planets would always move direct, and be as often in Oppofition to the Sun as in Conjunction with him. But the contrary of all this is true: for they are juft as often behind the Sun as before him, appear as often to move backward as forward, and are fo far from being feen at any time in the fide of the Heavens oppofite to the Sun, that they were never feen a quarter of a circle in the Heavens diftant from him.
141. Thefe two Planets, when viewed at different times with a good telefcope, appear in all the various fhapes of the Moon; which is a plain

Appearances of Mercury and Venus. proof that they are enlightened by the Sun, and thine not by any light of their own : for if they did, they would conftantly appear round as the Sun does; and could never be feen like dark fots upon the Sun when they pafs directly between him and us. Their regular Phafes demontrate them to be fpherical bodies; as may be fhewn by the following experiment:

Hang an ivory ball by a thread, and let any Experimens perfon move it round the flame of a candle, at they to two or three yards diftance from your eye; when round. the ball is beyond the candle, fo as to be almoft hid by the flame, its enlightened fide will be toward you, and appear round like the Full Moon: when the ball is between you and the candle, its enlightened fide will difappear, as the Moon does at the Change : when it is half way between thefe two pofitions, it will appear half illuminated, like the Moon in her Quarrers: but in every other place between thefe pofitions, it will appear more or lefs horned or gibbous. If this experiment be made with a flat circular plate, you may make it appear fully enlightened, or not enlightened at all; but can never make it feem either horned or gibbous.
plate if. Experiment to reprefent the motions of Mercery and Venus.
142. If you remove about fix or feven yard's from the candle, and place yourfelf fo that its flame may be juft about the height of your eye, and then defire the ocher perfon to move the ball flowly round the candle as before, kecping it as near of an equal height with the flame as he poffibly can, the ball will appear to you not to move in a circle, but to vibrate backward and forward like a pendulum, moving quickeft when it is directly between you and the candle, and when directly beyond it; and gradually flower as it goes farther to the right or left fide of the flame, until it appears at the greateft diftance from the flame; and then, though it continues to move with the fame velocity, it will feem to ftand fill for a moment. In every Revolution it will fhew all the above Phafes, § 141 ; and if two balls, a fmaller and a greater, be moved in this manner round the candle, the fmaller ball being kept neareft the flame, and carried round almoft three times as often as the greater, you will have a tolerable good reprefentation of the apparent Motions of Mercury and Venus; efpecially if the bigger ball defcribes a circle almoft twice as large in diameter as the circle defcribed by the leffer.
Fig. III.

The Elongaions or Digreffions of Mercury from the
Sun.
143. Let \(A B C D E\) be a part or fegment of the vifible Heavens, in which the Sun, Moon, Planets, and Stars, appear to move at the fame diftance from the Earth E. For there are certain limirs, beyond which the eye cannot judge of different diftances; as is plain from the Moon's appearing to be as far from us as the Sun and Stars are. Let the circle fghiklmno be the Orbit in which Mercury 12 moves round the Sun \(S\), according to the order of the letters. When Mercury is at \(f\), he difappears to the Earth at \(E\), becaufe his enlightened fide is turned from it; unlef he be then in one of his Noules, \(\$ 20.25\); in which cale he will appear like a dark foot upon the Sun. When he is at \(g\) in his Orbit, he appears at \(B\) in the Heazvens weft-
ward of the Sun \(S\), which is feen at \(C\) : when at \(b\), PLATEII. he appears at \(A\), at his greateft weftern elongation or dittance from the Sun; and then feems to ftand ftill. But, as he moves from \(b\) to \(i\), he appears to go from \(A\) to \(B\); and feems to be in the fame place when at \(i\), as when he was at \(g\), but not near fo big: at \(k\) he is hid from the Earth \(E\) by the Sun \(S\); being then in his fuperior Conjunction. In going from \(k\) to \(l\), he appears to move from \(C\) to \(D\); and when he is at \(n\), he appears fationary at \(E\); being feen as far eaft from the Sun then, as he was weft from it at \(A\). In going from \(n\) to 0 in his Orbit, he feems to go back ayain in the Heavens, from \(E\) to \(D\); and is feen in the fame place (with refpect to the Sun) at 0 , as when he was at \(l\); but of a larger diameter at 0 , becaufe he is then nearer the liarth \(E\) : and when he comes to \(f\), he again paffes by the Sun, and difappears as before. In going from \(n\) to \(b\) in his Orbit, he feems to go backward in the Heavens from \(E\) to \(A\); and in going from \(b\) to \(n\), he feems to go forward from \(A\) to \(E\), as he goes on from \(f\), a little of his enlightened lide at \(g\) is feen from \(E\); at \(b\) he appears half full, becaule half of his enlightened fide is feen; at \(i\), gibbous, or more than half full; and at \(k\) he would appear quite full, were he not hid from the Earth \(E\) by the Sun \(S\). At \(l\) he appears gibbous again: at \(n\) half decreafed, at o horned, and at \(f\) new like the Moon at her Change. He goes fooner from his eaftern fation at \(n\) to his weftern ीation at \(b\), than from \(b\) to \(n\) again ; becaufe he goes through lefs than half his Orbit in the former cafe, and more in the latter.
144. In the fame Figure, let FGHIKL MN be Fig. In. the Urbit in which Venus \(v\) goes round the Sun \(S\), according to the order of the letters: and let E be the Earth as before. When Venus is at \(F\), he is in her inferior Conjunction; and difappears like the New Moon, becaufe her dark fide is toward the Earth. At G, the appears half enlightened
to the Earth, like the Moon in her firft quarter: at \(H\), fhe appears gibbous; at \(I\), almoft full; her enlightened fide being then nearly towards the Earth: at \(K\) fhe would appear quite full to the Earth \(E\); but is hid from it by the Sun \(S\) : at \(L\), She appears upon the decreafe, or gibbous; at \(M\), more fo; at \(N\), only half enlightened; and at \(F\), fhe difappears again. In moving from \(N\) to \(G\),

The greiteft Elongations of M-rcury and Venus.

Mernine and Evening S:ar, what. fhe feems to go backward in the Heavens; and from \(G\) to \(N\), forward; but as fhe defcribes a much greater portion of her Orbit in going from \(G\) to \(N\), than from \(N\) to \(G\), the appears much longer direct than retrograde in her motion. At \(N\) and \(G\) fhe appears ftationary ; as Mercury does at \(n\) and \(b\). Mercury, when ftationary, feems to be only 28 degrees from the Sun ; and Venus when fo, 47; which is a demonftration that Mercury's Orbit is included within Venus's, and Venus's within the Earth's.
145. Venus, from her fuperior Conjunction at \(K\) to her inferior Conjunction at \(F\), is feen on the eaft fide of the Sun \(S\) from the Earth \(E\); and therefore fhe fhines in the Evening after the Sun fets, and is called the Evering Star: for, the Sun being then to the weftward of Venus, he muft fet firf. From her inferior Conjunction to her fuperior, fle appears on the weft fide of the Sun ; and therefore rifes before him, for which reafon the is called the Morning Star. When fhe is about \(N\) or \(G\), fhe flines fo bright, that bodies caft fladows in the night-time.
146. If the Earth kept always at \(E\), it is evident that the flationary places of Rivercury and Venus would always be in the fame points of the Heavens where chey were before. I'or example: whilf Mercury \(n\) gnes from \(b\) to \(n\), according to the order of the letters, he appears to defcribe the \(\operatorname{arc} A B C D E\) in the Heavens, direct: and while vatiaute. he goes from \(n\) to \(b\), he feems to defcribe the fame arc back again, from \(E\) to \(A\), retrograde; always
at \(n\) and \(b\) he appears ftationary at the fame points \(E\) and \(A\) as before. But Mercury goes round his Orbit, from \(f\) to \(f\) again, in 88 days; and yet there are ir 6 days from any one of his Conjunctions, or apparent Stations, to the fame again:- and the places of thefe Conjunctions and Stations are found to be about 114 degrees ealtward from the points of the Heavens where they were laft before; which proves that the Earth has nut kept all that time at \(E\), but has had a progreffive motion in its Orbit from \(E\) to \(t\). Venus allo differs every time in the places of her Conjunctions and Stations; but much more than Mercury; becaufe, as Venus defcribes a much larger Orbit than Mercury does, the Earth advances fo much the farther in its annual path before Venus comes round again.
147. As Mercury and Venus, feen from the Earth, have their refpective H longations from the Sun, and ftationary places; fo has the Earth, feen from Mars; and Mars, feen from Jupiter; and Jupiter, feen from Saturn. That is, to every fuperior Planet, all the inferior ones have their Stations and Elongations; as Venus and Mercury have to the Earth. As feen from Saturn, Mercury never goes more than \(2 \frac{1}{2}\) degrees from the Sun; Venus \(4 \frac{1}{3}\); the Earth 6 ; N:ars \(9 \frac{1}{2}\); and Jupiter \(33 \frac{1}{4}\); fo that Mercury, as feen from the Earth, has almolt as great a Digrefion or Elongation from the Sun, as Jupiter feen from Saturn.
148. Becaufe the Earth's orbit is included within the Orbits of Mars, Jupiter, and Sacurn, they are feen on all fides of the Heavens; and are as A proof of the Earth: annual Motione often in Oppofition to the Sun as in Conjunction with him. If the Earth flood Atill, they would always appear direct in their motions; never retrograde nor itationary. But they feem to go juft as often backward as forward; which, if gravity be allowed to exift, affords a fufficient prouf of the Earth's annual motion: and withour its exiftence, the Planets could never fall from the tangents if
flate ir, their Orbits toward the Sun, nor could a fone, which is once thrown up from the earth, ever fail to the earth again.
149. As Venus and the Earth are fuperior Planets to Mercury, they fhew much the fame A ppearances to him that Mars and Jupiter do to us. Let Mercury in be at \(f\), Venus \(v\) at \(F\), and the Earth

Fig. Mit General Phenomena of a fuperior §lanet to an inletior. at \(E\); in which fituation Venus hides the F arth from Mercury; but, being in oppofition to the Sun, the fhines on Mercury with a full illumined Orb; though, with refpect to the Earth, the is in conjunction with the Sun, and invifible. When Mercury is at \(f\), and \(V\) enus at \(G\), her enlightened fide not being directly toward him, the appears a litele ribbous; as Mars does in a like fituation to us: but, when Venus is at \(I\), her enlightened fide is fo much toward Mercury at \(f\), that he appears to him almoft of a round figure. At \(K\), Venus difappears to Mercury at \(f\), being then hid by the Sun; as well as all our fuperior Planets are to us, when in corijunction with che Sung. When Venus has, as it were, emerged out of the Sun-beams, as at \(L\), fhe appears almoft full to Mercury at \(f\); at \(M\) and \(N\), a little gibbous; quite full at \(F\), and largeft of all; being then in oppofition to the Sun, and confequently neareft to Mercury at \(F\); hining ftrongly on him in the night, becaufe her diflance from him then is fomewhat lefs than a fifth part of her diftance from the Earth, when the appears roundeft to it between \(I\) and \(K\), or between \(K\) and \(I\), as feen from the Earth \(E\). Confequently, when Venus is oppofite to the Sun as feen from Mercury, the appears more than 25 times as large to him as the does to us when at the fulleft. Our cafe is almost fimiliar with refpect to Mars, when he is oppofite to the Sun; becaufe he is then fo near the Barth, and has his whole enlightened fide toward it. Bur, becaufe the Orbits of Jupiter and Saturn are very large in proportion to the Earth's O:bit, the fe wo I'lanets appear much lefs magni-
fied at their Oppoficions, or diminifhed at their plate ho Conjunetions, than Mars does, in proportion to their mean apparent Diameters.

\section*{C H A P. VII.}

The phyjical Caufes of the Motions of the Planets. The Excentricities of their Orbits. The Times in which the Aition of Gravity would bring them to the Sun. Archimedes's ideal Problem for moving the Earth. The World not eternal.

\({ }^{150 .}\)ROM the uniform projectile motion of bodies in ftraight lines and the univerfal power of attraction which draws them off from the le lines, the curvilineal motions of all the Planets arife If the body \(A\) be projected along the right line \(A B X\), in open Space, where it meets with no refiftance, and is not drawn afide by any other power, it will for ever go on with the fame velocity, and in the fame direction. For, the force which moves it from \(A\) to \(B\) in any given time, will carry it from \(B\) to \(X\) in as much more time, and

Circular Orbits. fo on, there being nothing to obftruct or alcer its motion. But if, when this projectile force has carried it, fuppofe to \(B\), the body \(S\) begins to attraet it, with a power duly adjufted, and perpendicular to its motion at \(B\), it will then be drawn from the Araight line \(A B X\), and forced to revolve about \(S\) in the circle \(B \Upsilon T U\). When the body \(A\) comes to Fig. IV. \(U\), or any other part of its Orbir, if the fmall body \(u\), within the fphere of \(U\) 's attraction, be projected as in the right line \(Z\), with a force perpendicular to the attraction of \(U\), then \(u\) will go round \(U\) in the Orbit \(W\), and accompany it in its whole courfe round the body \(S\). Here \(S\) may reprefent the Sun, \(U\) the Earth, and \(u\) the Moon.
151. If a planet at \(B\) gravitates, or is attracted, toward the Sun, fo as to fall from \(B\) to \(y\) in the time
time that the projectile force would have carried ic from \(B\) to \(X\), it will defcribe the curve \(B X\) by the combined action of thefe two forces, in the fame time that the projectile force fingly would have carried it from \(B\) to \(X\), or the gravitating power fingly have caufed it to defcend from \(B\) to \(y\); and thefe two furces being duly proportioned, and perpendicular to each other, the Planet obeying them both will move in the circle \(B X I U^{*}\).
152. But if, while the projectile force would carry the Planet from \(B\) to \(b\), the Sun's attraction (which conflitutes the Planet's gravitation) fhould bring it down from \(B\) io I , the gravitating power would then be tooftrong for the projectile force; and would caufe the Planet to defcribe the curve \(B C\).

Elliptical Olbits. When the Planet comes to \(C\), the gravitating power (which always increafes as the fquare of the diftance from the Sun \(S\) diminifhes) will be yet ftronger for the projectile force; and by confpiring in fome degree therewith, will accelerate the Planet's motion all the way from \(C\) to \(K\); cauling it to defcribe the arcs \(B C, C D, D E, E F, \& x c\) all in equal times. Having its motion thus accelerated, it thereby gains fo much centrifugal force, or tendency to fly off at \(K\) in the line \(K k\), as overcomes the Sun's attraction: and the centrifugal force being too great to allow the Planet to be brought nearer the Sun, or even to move round him in the circle Klmn, \&rc. it goes off; and afcends in the curve KLMN, \&cc. its motion decreafing as gradually from \(K\) to \(B\), as it increafed from \(B\) to \(K\), becaufe the Sun's attraction now acts againtt the Planet's projectile motion juft as much as it acied with it before. When the Planet has got round to \(B\), its projectile force is as much diminifhed from its mean ftate about \(G\)

\footnotetext{
* To make the projectile force balance the gravitating power fo exadly ay thas the hody may muve in a Circle, the projectile velocity of the body mult be tuch as it would have acquired by gravity alonc in fulling through half the radius of the circle.
}
or \(N\), as it was augmented at \(K\); and fo, the Sun's platein, attraction being more than fufficient to keep the Planet from going off at \(B\), it defcribes the fame Orbit over again, by virtue of the fame forces or powers.
153. A double projectile force will alwaya balance a quadruple power of gravity. Let rhe Planet at \(B\) have twice as great an impulfe from thence toward \(X\), as it had before; that is, in the fame length of time that it was projected from \(B\) to \(b\), as in the laft example, let it now be projected from \(B\) to \(c\); and it will require four times as much gravity to retain it in its Orbit ; that is, it muft fall as far as from \(B\) to 4 in the time that the projectile force would carry it from \(B\) to \(c\); otherwife it could not defcribe the curve \(B D\), as
is evident by the Figure. But, in as much time as the Planet moves from \(B\) to \(C\) in the higher part of its Orbit, it moves from \(I\) to \(K\), or from \(K\) to \(L\), in the lower part thereof; becaufe, from the joint action of thefe two forces, it muft always de-

Fig. IV.
The Planets cefrribe equal Areas in equal times. fcribe equal Areas in equal times, throughout its annual courfe. Thefe Areas are reprefented by the triangles \(B S C, C S D, D S E, E S F\), \&c. whofe contents are equal to one another, quite round the Figure.
154. As the Planets approach nearer the Sun, and recede farther from him, in every Revolution; there may be fome difficulty in conceiving the reafon why the power of gravity, when it once gets the better of the projectile force, does not bring the Planets nearer and nearer the Sun in every Revolution, till they fall upon and unite with him; or why the projectile force, when it once gets the better of gravity, does not carry the Planets farther and farther from the Sun, till it removes them quite out of the fphere of his attration, and caufes them to go on in Atraight lines for ever afterward. But by confidering the effects of the ee powers as clefcribed in the two laft Articles, this difficulty will be re-
moved. Suppofe a Planet at \(B\) to be carried by the projectile force as far as from \(B\) to \(b\), in the time that gravity would have brought it down from \(B\) to I: by thefe two forces it will defcribe the curve \(B C\). When the Planet comes down to \(K\), it will be but half as far from the Sun \(S\) as it was at \(B\); and therefore, by gravitating four times as ftrongly towards him, it would fall from \(K\) to \(V\) in the fame length of time that it would have fallen from \(B\) to \(I\) in the higher part of its Orbit, that is, through four times as much fpace; but its projectile force is then fo much increafed at \(K\), as would carry it from \(K\) to \(k\) in the fame time; being double of what it was at \(B\), and is therefore too ftrong for the gravitating power, either to draw the Planet to the Sun, or caufe it to go round him in the circle Klmn, \(\& c\). which would require its falling from \(K\) to \(w\), through a greater fpace than gravity can draw it, while the projectile force is fuch as would carry it from \(K\) to \(k\) : and therefore the Planet afcends in its Orbit \(K L M N\). decreafing in its velocity for the caufes already affigned in \(\$ 152\).

The Planetary Orbits elliptical. be divided into 1000 equal parts, the Excentricities of their Orbits, both in fuch parts and in Englijh miles, will be as follow: Mercury's, 210 parts, or \(6,720,000\) miles; Venus's, 7 parts, or 413,000 miles; the Earth's, 17 parts, or \(1,377,000\) miles; Mars's, 93 parts, or \(11,439,000\) miles; Jupiter's, 48 parts, or \(20,353,000\) miles; Saturn's, 55 parts, or \(42,735,000\) miles. Of the nearett of the three forementioned Comets, \(1,45^{8,000}\) miles; of the middlemoft, \(2,025,000,000\) miles; and of the outermoft, \(6,600,000,000\).
156. By the above-mentioned law, § 150 E Seq. bodies will move in all kinds of Elliptes, whether long or fhort, if the fpaces they move in be void of refiftance. Only thofe which move in the longer Ellipfes have fo much the lefs projectile force impreffed upon them in the higher parts of their Orbits ; and their velocities, in coming down towards the Sun, are fo prodigioully increafed by his attraction, that their centrifugal forces in the lower parts of their Orbits are fo great, as to overcome the Sun's attraction there, and caufe them to afcend again towards the higher parts of their Orbits; during which time, the Sun's attraction acting focontrary to the motions of thofe bodies, caufes them to move flower and nower, until their projectile forces are diminifhed almoft to nothing; and then they are brought back again by the Sun's attraction, as before.
157. If the projectile forces of all the Planets and Comets were deftroyed at their mean diftances from the Sun, their gravities would bring them down fo, as that Mercury would fall to the Sun in 15 days 13 hours; Venus in 39 days. 17 hours; the Earth or Moon in 64 days 10 hours; Mars in In what times the Planets would fall to the Sun by the power of gravity. 121 days; Jupiter in \(290 ;\) and Saturn in 767. The neareft Comet in 13 thoufand days; the middlemoft in 23 thoufand days; and the outermoft in 66 thoufand days. The Moon would fall to the Earth in 4 days 20 hours; Jupiter's firft Moon would fall to him in 7 hours, his fecond in 15 , his third in 30, and his fourth in 71 hours. Saturn's firft Moon would fall to him in 8 hours, his fecond in 12 , his third in 19, his fourth in 68 hours, and his fifth in 336. A ftone would fall to the Earth's center, if there were a hollow paffage, in 21 mi nutes 9 feconds. Mr. Whiston gives the following Rule for fuch Computations: " *It is demonftrable, that half the Period of any Planet, when it is diminified in the fefquialteral proportion of
* Aftronomical Principles of Religion, p. 66.
the number I to the number 2 , or nearly in the proportion of 1000 to 2828 , is the time that it would fall to the cencer of its Orbit. This proportion is, when a quantity or number contains an. other once and a half as much more.

The prodigious attraction of the Sun and Planets.

ArcuiMEDES's Problem for raifing the Earth. -
158. The quick motions of the Moons of Jupiter and Saturn round their Primaries, demonftrate that thefe two Planets have ftronger attractive powers than the Earch has. For the ftronger that one body attracts another, the greater muft be the projectile force, and confequently the quicker muft be the motion of that other body to keep it from falling to its primary or central Planet. Jupiter's fecond Moon is 124 thoufand miles farther from Jupiter than our Moon is from us; and yet this fecond Moon goes almoft eight times round Jupiter whilft our Moon goes only once round the Earth. What a prodigious attractive power muft the Sun then have, to draw all the Planets and Satellites of the Syftem towards him! and what an amazing power muft it have required to put all thefe Planets and Moons into fuch rapid motions at firft! Amazing indeed to us, becaufe impoffible to be effected by the ferength of all the living Creatures in an unlimited number of Worlds ; but no ways hard for the Almighty, whofe Planetarium takes in the whole Univerfe!
159. The celebrated Archimedes affirmed he could move the Earth, if he had a place at a diftance from it to ftand upon to manage his machinery *. This affertion is true in Theory, but, upon examination, will be found abfolutely impoffible in fact, even though a proper place and materials of fufficient Arength could be had.

The fimpleft and eafieft method of moving a heavy body a little way is by a lever or crow, where a fmall weight or puwer applied to the long arm

\footnotetext{
* \(\Delta\) ós шür \(\varsigma \hat{\omega}\), xaì ròy rocuiv xwiño, i, c. Give me a place to ftand on, and 1 flail move the Earth.
}
will raife a great weight on the fhort one. But then the fmall weight muft move as much quicker than the great weight, as the latter is heavier than the former; and the length of the long arm of the lever muft be in the fame proportion to the length of the fhortone. Now, fuppofe a man to pull, or prefs the end of the long arm with the force of 200 pound weight, and that the Earth contains in round numbers, \(4,000,000,000,000,000,000,000\), or 4000 Trillions of cubic feet, each at a mean rate weighing 100 pound: and that the prop or center of motion of the lever is 6000 miles from the Earth's center: in this cafe, the length of the lever from the Fulcrum or center of motion to the moving power or weight ought to be 12,000 , \(000,000,000,000,000,000,000\), or 12 Quadrillions of miles; and fo many miles mult the power move, in order to raife the Earth but one mile; whence it is eafy to compute, that if Archimedes; or the power applied, could move as fwift as a cannonbuilet, it would take \(27,000,000,000,000\), or 27 Billions of years to raife the Earth one inch.

If any other machine, fuch as a combination of wheels and fcrews, was propofed to move the Earth, the time it would require, and the face gone through by the hand that turned the machine, would be the fame as before. Hence we may learn, that however boundlefs our Imagination and Theory may be, the actual' operations of man are confined wichin narrow bounds; and more fuited to our real wants than to our defires.
160. The Sun and Planets mutually attract each Hard to dee other: the power by which they do fo we call termine Gravity. But whether this power be mechanical viry is or no, is very much difputed. Obfervation proves that the Planets difturb one another's motions by it, and that it decreales according to the fquares of the diftances of the Sun and Planets; as light, which is known to be material, likewife does. G 2

Hence

Hence Gravity fhould feem to arife from the agency of fome fubtle matter preffing toward the Sun and Planets, and acting like all mechanical caufes, by contakt. But, on the other hand, when we confider that the degree or force of Gravity is exactly in proportion to the quantities of matter in thofe bodies, without any regard to their bulks or quantities of furface, acting as freely on their internal as external parts, it feems to furpafs the power of mechanifin, and to be either the immediate agency of the Deity, or effected by a law originally eftablifhed and impreft on all matter by him. But fome affirm that matter, being altogether inert, cannot be impreffed with any Law, even by almighty Power ; and that the Deity, or fome fubordinate intelligence, muft therefore be conftantly impelling the Planets toward the Sun, and moving them with the fame irregularities and difturbances which Gravity would caufe, if it could be fuppofed to exift. But, if a man may venture to publifh his own thoughts, it feems to me no more an abfurdity, to fuppofe the Deity capable of infufing a Law, or what Laws he pleafes, into matter, than to fuppofe him capable of giving it exiftence at firtt. The manner of both is equally inconceivable to us; but neither of them imply a contradiction in our ideas: and what implies no contradiction is within the power of Omnipotence. 161. That the projectile force was at firt given by the Leity is evident. For, fince matter can never put itfelf in motion, and all bodies may be moved in any direction whatfoever ; and yer the Planets, both primary and fecondary, move from weft to eaft, in planes nearly coincident; while the Comets move in all directions, and in planes very different from one another; thefe motions can be owing to no mechanical caufe or neceffity, but to the free will and power of an intelligent Being.
162. Whatever Gravity be, it is plain that it acts every moment of time: for if its action fhould ceafe, the projectile force would inftantly carry off the Planets in ftraight lines from thofe parts of their Orbits where Gravity left them. But, the Planets being once put into motion, there is no occafion for any new projectile force, unlefs they meet with fome refiftance in their Orbits; nor for any mending hand, unlefs they difturb one another too much by their mutual attractions.
163. It is found that there are difturbances among the Planets in their motions, arifing from their mutual attractions when thry are in the fame The Planets difturb one another's motions. quarter of the Heavens; and the beft modern obfervers find that our years are not always precifely of the fame length*. Befides, there is reafon to believe that the Moon is fomewhat nearer the Earth now than the was formerly ; her periodical month being fhorter than it was in former ages. For our Aftronomical Tables, which in the prefent Age fhew the times of Solar and Lunar Eclipfes to great precifion, do not anfwer fo well for very The conlequences thereof. ancient Eclipfes. Hence it appears, that the Moon does not move in a medium void of all refiftance, § 174 ; and therefore her projectile force being a little weakened, while there is nothing to diminif her gravity, fhe muft be gradually approaching nearer the Earth, defcribing fmaller and finaller Circles round it in every Revolution, and finifhing her Period fooner, although her ablolute motion

\footnotetext{
* If the Planets did not mutually attraft one another, the areas defcribed by them would be exactly proportionate to the times of defcription, \(\$ 153\). But obfervations prove that thefe areas are not in fuch exact proportion, and are moft varied when the great-ft number of Planets are in any particular quarter of the Heavens. When any two Planets are in conjunction, their mutual attractions, which tend to bring thrm nearer to one another, dra..s the inferior one a litule firthor from the Sun, and the fuperior one a little nearer to him; Ly . which means, the figure of their Orbits is fomewhat aliered ; but this alteration is 100 fmall to be difcovered in feveral ages.
}
with regard to fpace be not fo quick now as it was formerly: and, therefore, fhe mult come to the Earth at laft; unlefs that Being, which gave her a fufficient projectile force at the beginning, adds a little more to it in due time. And, as all the Planets move in fpaces full of ether and light, which are material fubftances, they too mult meet with fome refiftance And therefore, if their gravities are not diminifhed, nor their projectile forces increafed, they muft neceffarily approach nearer and nearer the Sun, and at length fall upon and unite with him.

The world not eternal.
164. Here we have a ftrong philofophical argument againft the eternity of the World. For, had it exifted from eternity, and been left by the Deity to be governed by the combined actions of the above forces or powers, generally called Laws, it had been at an end long ago. And if it be left ic them, it muft come to an end. But we may be certain that it will laft as long as was intended by its Author, who ought no more to be found fault with for framing fo perifhable a work, than for making man mortal.

\section*{C H A P. VIII.}

Of Ligbt. Its proportional Quantities on the different Planets. Its Refraetions in Water and Air. The Atmopphere; its Weigbt and Properties. The Horizontal Moon.
165. IGHT confifts of exceeding fmall particles of matter iffuing from a luminous body; as from a lighted candle fuch particles of matter conftantly flow in all directions. Dr. Niew-

The amazing fmallnefs of the particles of light. ENTYT* computes, that in one fecond of time there flows \(48,660,000,000,000,000,000,000,000,000\), \(000,000,000,000,000\) particles of light out of a burning candle; which number contains at leaft
* Religious Philofopher, Vol. III. p. 65.

6,337,
\(6,337,242,000,000\) times the number of grains of fand in the whole Earth; fuppofing 100 grains of fand to be equal in length to an inch, and confequently, every cubic inch of the Earth to contain one million of fuch grains.
166. Thefe amazingly fimall particles, by ftriking upon our eyes, excite in our minds the idea of light: and, if they were as large as the fmalleft particles of matter difcernible by our beft micro-

The dreadful effects that would enfue from their teing larger. fcopes, inftead of being ferviceable to us, they would foon deprive us of fight by the force arifing from their immenfe velocity, which is above \(16_{4}\) thoufand miles every fecond* \({ }^{*}\) or \(1,230,000\) times fwifter than the motion of a cannon-bullet. And therefore, if the particles of light were fo large, that a million of them were equal in bulk to an ordinary grain of fand, we durft no more open our eyes to the light, than fuffer fand to be fhot point blank againft them.
167. When thefe fmall particles, flowing from the Sun or from a candle, fall upon bodies, and are thereby reflected to our eyes, they excite in us the idea of that body, by forming its picture on the retinat. And fince bodies are vifible on all fides, light muft be reflected from them in all directions.
168. A ray of light is a continued ftream of thefe particles, flowing from any vifible body in a ftraight line. That the rays move in ftraight, and not in crooked lines, unlefs they be refracted, is evident from bodies not being vifible if we endeavour to look at them through the bore of a bended pipe; and from their ceafing to be feen by the interpofition of other bodies, as the fixed Stars by the interpofition of the Moon and Planets, and the Sun wholly or in part by the interpofition of the. Moon, Mercury, or Venus. And that thefe
rays do not interfere, or joftle one another out of

\footnotetext{
* This will be demonftrated in the eleventh Chapter.
+ A fine net-work membrane in the bottom of the eye.
}

How objects become vifible to us.

The rays of light naturally move in Araight lines.

PLATE II. their ways, in flowing from different bodies all around, is plain from the following Experiment. Make a little hole in a thin plate of metal, and fet the plate upright on a table, facing a row of lighted candles ftanding by one another; then place a fheet of paper or pafteboard at a little diftance from the other fide of the plate, and the rays of all the candles, flowing through the hole, will form as many fpecks of light on the paper as there are candles before the plate; each feeck as diftinct and large, as if there were only one candle to caft one fpeck; which fhews that the rays are no hindrance to each other in their motions, although they all crofs in the hole.
169. Light, and therefore heat, fo far as it depends on the Sun's rays, (\(\$ 85\), toward the end) decreafes in proportion to the fquares of the diftances of the Planets from the Sun. This is eafily demonftrated by a Figure which, together with its defcription, I have taken from Dr. Smith's

Fig. XI.

In what proportion light and heat decreale at any given diftance from the Sun. Optics*. Let the light which flows from a point \(A\), and paffes through a fquare hole \(B\), be received upon a plane \(C\), parallel to the plane of the hole; or, if you pleafe, let the figure \(C\) be the fhadow of the plane \(B\); and when the diftance \(C\) is double of \(B\), the length and breadth of the fhadow \(C\) will be each double of the length and breadth of the plane \(B\); and treble when \(A D\) is treble of \(A B\); and fo on: which may be eafily examined by the light of a candle placed at \(A\). Therefore the furface of the fhadow \(C\), at the diftance \(A C\) double of \(A B\), is divifible into four fquares, and at a treble diftance, into nine fquares, feverally equal to the fquare \(B\), as reprelented in the Figure. The light then which falls upon the plane B, being fuffered to pais to double that diftance, will be unifurmly fpread over four times the fpace, and confequently will be four times thinner

\footnotetext{
* Book I. Art. 57.
}
in every part of that fpace; and at a treble dif- plate ito tance, it will be nine times thinner; and at a quadruple diftance, fixteen times thinner, than it was at firt: and fo on, according to the increafe of the fquare furfaces \(B, C, D, E\); built upon the diffances \(A B, A C, A D, A E\). Confequently, the quantities of this rarified light received upon a furface of any given fize and fhape whatever, removed fucceffively to thefe feveral diftances, will be but one fourth, one ninth, one fixteenth of the whole quantity received by it at the firft difrance \(A B\). Or, in general words, the denfities and quatities of light, received upon any given plane, are diminifhed in the fame proportion, as the fquares of the diftances of that plane, from the luminous body, are increafed : and, on the contrary, are increaled in the fame proportion as thefe fquares are diminifhed.
170. The inore a telefcope magnifies the difks of the Moon and Planets, they appear fọ much dimmer than to the bare eye ; becaufe the telefcope cannot magnify the quantity of light as it does the furface; and, by fpreading the fame quantity of light over a furface fo much larger than the naked eye beheld, juft fo much dimmer

Why the
Planets appear dimmer when viewed through telefcopes. than by the bare eye. mult it appear when viewed by a telefcope than by the bare eye.

17r. When a ray of light paffes out of one medium * into another, it is refracted, or turned out of its firt courfe, more or lefs, as it falls more or lefs obliquely on the refracting furface which divides the two mediums. This may be proved by feveral experiments; of which we fhall only give three for example's fake. I. In a bafon \(F G H\), put a piece of money, as \(D B\), and then retire from it to \(A\); that is, till the edge of the bafon at \(E\) juft hides the money from your fight; then keep-
* A medium, in this fenfe, is any tranfparent body, or that through which the rays of light can pafs; as water, glafs, diamond, air, and even a vacuum is fometimes called a Medium.
ing your head fteady, let another perfon fill the bafon gently with water. As he fills it, you will fee more and more of the piece \(D B\); which will be all in view when the baton is full, and appear as if lifted up to \(C\). For the ray \(A E B\), which was ftraight while the bafon was empty, is now bent at the furface of the water in \(E\), and turned out of its rectilineal courfe into the direction \(E D\). Or, in other words, the ray \(D E K\), that proceeded in a fraight line from the edge \(D\) while the bafon was empty, and went above the eye at \(A\), is now bent at \(E\); and inftead of going on in the rectilineal direction \(D E K\), goes in the angled direction \(D E A\), and by entering the eye at \(A\) renders the object \(D B\) vifible. Or, 2dly, Place the bafon where the Sun fhines obliquely, and obferve where the fhadow of the rim \(E\) falls on the bottom, as at \(B\) : then fill it with water, and the fhadow will fall at \(D\); which proves, that the rays of light, falling obliquely on the furface of the water, are refracted, or bent downwards into it.
172. The lefs obliquely the rays of light fall upon the furface of any medium, the lefs they are refracted; and if they fall perpendicularly on it, they are not refracted at all. For, in the laft experiment, the higher the Sun rifes, the lefs will be the difference between the places where the edge of the fhadow falls, in the empty and full bafon. And, 3 dly, If a ftick be laid over the bafon, and the Sun's rays being reflected perpendicularly into it from a looking glais, the fhadow of the ftick will fall upon the fame place of the bottom, whecher the bafon be full or empty.
173. The denfer that any medium is, the more is light refracted in paffing through it.

The AtmoSphere.
174. The Earth is furrounded by a thin fluid mals of matter, called the Air or Atmoff bere, which gravitates to the Earth, revolves with it in its diurnal motion, and goes round the Sun with
it every year. This fluid is of an elaftic or fpringy nature, and its loweft part, being preffed by the weight of all the Air above it, is preffed the clofeft together; and therefore the atmofphere is denfeft of all at the Earth's Surface, and becomes gradually rarer higher up. "It is well known* that the Air near the furface of our Earth poffeffes a fpace about 1200 times greater than \(W\) ater of the fame weight. And therefore, a cylindric column of Air 1200 feet high, is of equal weight with a cylinder of Water of the fame breadth, and but one foot high. But a cylinder of Air reaching to the top of the Atmofphere is of equal weight with a cylinder of Water about 33 feet high \(\dagger\); and therefore, if from the whole cylinder of Air, the lower part of 1200 feet high is taken away, the remaining upper part will be of equal weight with a cylinder of Water 32 feet high; wherefore, at the height of 1200 feet, or two furlongs, the weight of the incumbent air is lefs, and confequently the rarity of the compreffed Air is greater than near the Earth's furface, in the ratio of 33 to 32 . And the Air at all heights whatfoever, fuppofing the expanfion thereof to be reciprocally proportional to its compreffion; and this proportion has been proved by the experiments of Dr. Hocke and others. The refult of the computation I have fet down in the annexed Table: in the firt column of which you have the height of the Air in miles, whereof 4000 make a femi-diameter of the Earth; in the fecond the compreffion of the Air, or the incumbent weight; in the third its rarity or expanfion, fuppofing gravity to decreafe in the duplicate ratio of the diftances from the Earth's center. And the fmall numeral figures are here ufed to hew what number of cyphers mult be joined
- Niwton's Syfem of the World, p. 120.
\(\dagger\) This is evident from common pumps.
to the numbers expreffed by the larger figures, as \(0 .{ }^{17} 1224\) for 0.000000000000000001224 , and \(26956^{15}\) for 26956000000000000000 .

The Air's compreffion a nod rarity at different heights.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{AIR's} \\
\hline Height. 1 & Coniprefion. & Expanfion. \\
\hline - & 33 & \\
\hline 5 & 17.8515 & - . \(1.84{ }^{\text {¢ }} 6\) \\
\hline 10 & 9.6717. & - 3.4151 \\
\hline 20 & 2.852. & - 111.571 \\
\hline 40 & 0.2525. & - 136.83 \\
\hline 400 & 0. \({ }^{17} 122{ }^{122}\). & \(2695{ }^{102}\) \\
\hline 4000 & -. \({ }^{103} 19465\) & \(73907^{102}\) \\
\hline 40000 & o. \({ }^{192} 1628\) & 26263: \({ }^{189}\) \\
\hline 400000 & -. \({ }^{210} 7895\) & \(41798^{207}\) \\
\hline 4000000 & o. \({ }^{212} 9878\) & \(33414^{209}\) \\
\hline Infinite. & o. \({ }^{212} 9941\) & \(54622^{209}\) \\
\hline
\end{tabular}

From the above Table it appears that the Air in proceeding upward is rarified in fuch manner, that a fphere of that Air which is nearef the Earth but of one inch diameter, if dilated to an equal rarefaction with that of the Air at the height of ten femi-diameters of the Earth, would fill up more fpace than is contained in the whole Heavens on this fide the fixed Stars. And it likewife appears that the Moon does not move in a perfeetly free and unrefifting medium; although the Air, at a height equal to her diftances, is at leaft \(3400^{500}\) times thinner than at the Earth's furface; and therefore cannot refift her motion, fo as to be fenfible in many ages.

Its weight 175. The weight of the Air, at the Farth's furhow found, face, is found by experiments made with the Airpump; and alfo by the quantity of mercury that the Atmofphere balances in the barometer; in which, at a mean ftate, the mercury ftands \(29 \frac{\pi}{2}\) inches high. And if the tube were a fquare inch wide, it would at that height contain \(-9 \frac{1}{2}\) cubic inches of mercury, which is jult 15 pound weight:
and fo much weight of air every fquare inch of the Earth's furface fuftains; and every fquare foot 144 times as much, becaufe it contains 144 fquare inches. Now, as the Earth's furface contains, in round numbers, 200,000,000 fquare miles, it muft contain no lefs than \(5,575,680,000,000,000\) fquare feet; which being multiplied by 2160 , the number of pounds on each fquare foot, amounts to \(12,043,468,800,000,000,000\) pounds, for the weight of the whole Armofphere. At this rate, a middle-fized man, whofe furface is about 15 fquare feet, is preffed by 32,400 pound weight of Air all around; for fluids prefs equally up and down, and on all fides. But, becaufe this enormous weight is equal on all fides, and counrerbalanced by the fpring of the Air diffufed throu \(h\) all parts of our bodies, it is not in the leaft degree felt by us.
176. Oftentimes the ftate of the Air is fuch, that we feel ourfelves languid and dull; which is commonly thought to be occafioned by the Air's being foggy and heavy about us. But that the

A common miffake about the weight of the Aira Air is then too light, is evident from the mercury's finking in the barometer, at which time it is generally found that the Air has not fufficient ftrength to bear up the vapours which compofe the Clouds: for, when it is otherwife, the Clouds mount high, and the Air is more claftic and weighty about us, by which ineans it balances the internal fpring of the Air within us, braces up our bloodveffels and nerves, and makes us brifk and lively.
177. According to Dr. Keill*, and other aftronomical writers, it is entirely owing to the Atmofphere that the Heavens appear bright in the daytime. For, without an Atmofphere, only that part of the Heavens would fhine in which the Sun was placed: and if we could live without Air,

Without an Atmofphere the Heavens would always appear dark, and we thould havenotwilight. and Thould turn our backs toward the Sun, the whole Heavens would appear as dark as in the

\footnotetext{
- See his Aftronorny, p. 232,
}
plate if. night, and the Stars would be feen as clear as in the nocturnal fky. In this cafe, we fhould have no twilight; but a fudden tranfition from the brighteft fun-fhine to the blackeft darknefs immediately after fun-fer; and from the blackeft darknefs to the brightelt fun-fhine at fun-rifing; which would be extremely inconvenient, if not blinding, to all mortals. But, by means of the Atmofphere, we enjoy the Sun's light, reflected from the aerial particles, for fome time before he rifes and after he fets. For, when the Earth by its rotation has withdrawn our fight from the Sun, the Atmofphere being ftill higher than we, has the Sun's light imparted to it; which gradually decreafes until he has got 18 degrees below the Horizon; and then, all that part of the Atmofphere which is above us is dark. From the length of twilight, the Doctor has calculated the height of the Atmofphere (fo far as it is denfe enough to reflect any light) to be about 44 miles. But it is feldom denfe enough at two miles height to bear up the clouds.

It brings the Sun in view tefore he rifes, and keeps him inviewafter be fets.

Fig. JX.
178. The Atmorphere refracts the Sun's rays fo, as to bring him in fight every clear day, before he rifes in the Horizon; and to keep him in view for fome minutes after he has really fet below it. For, at fome times of the year, we fee the Sun ten minutes longer above the Horizon than he would be if there were no refractions: and about fix minutes every day at a mean rate. 179. To illuftrate this, let IEK be a part of the Earth's furface, covered with the Atmofphere HGFC; and let HEO be the fenfible Horizon* of an obferver at \(E\). When the Sun is at \(A\), really below the Horizon, a ray of light, \(A C\), proceeding from him comes ftraight to \(C\), where it falls on the furface of the Atmofphere, and there entering a denfer medium, it is turned out of its rectilineal
- As far as one can fee round him on the Earth.
courfe \(A C d G\), and bent down to the obferver's eye at \(E\); who then fees the Sun in the direction of the refracted ray \(E d e\), which lies above the Horizon, and being extended out to the Heavens, fhews the Sun at \(B, \oint 171\).
180. The higher the Sun rifes, the lefs his rays are refracted, becaufe they fall lefs obliquely on the furface of the Atmofphere, § 172. Thus, when the Sun is in the direction of the line \(E f L\) continued, he is fo nearly perpendicular to the furface of the Earth at \(E\), that his rays are but very little bent from a rectilineal courfe.
181. The Sun is about \(32 \frac{1}{4} \mathrm{~min}\). of a deg. in breadth, when at his mean diftance from the Earth; and the horizontal refraction of his rays is

The quan -
tity of Re fraction. \(33 \frac{3}{4}\) min. which being more than his whole diameter, brings all his Difc in view, when his uppermoft edge rifes in the Horizon. At ten deg. height, the refraction is not quite 5 min .; at 20 deg. only 2 min . 26 fec.; at 30 deg . but 1 min . 32 fec. ; and at the Zenith, it is nothing; the quantity throughout is fhewn by the annexed Table, calculated by Sir Isaac Newton.

Concerning the Atmopphere.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{182. A Table herwing the Refractions of the Sun, Moon, and Stars; adapted to their apparent Alitudes.} \\
\hline Appar. Alt. & \multicolumn{2}{|l|}{Refraction.} & \[
\begin{aligned}
& \text { Ap. } \\
& \text { Alt. }
\end{aligned}
\] & Retraction. & \[
\begin{aligned}
& \text { Ap. } \\
& \text { Alt. }
\end{aligned}
\] & \multicolumn{2}{|l|}{Refraction.} \\
\hline D. M. & M. & S. & D. & M. S. & D. & M. & S. \\
\hline \(\bigcirc\) & 33 & 45 & 21 & 18 & 56 & & 36 \\
\hline 15 & & 24 & 22 & 211 & 57 & & 35 \\
\hline - 30 & 27 & 35 & 23 & 25 & 58 & - & 34 \\
\hline - 45 & 25 & 11 & 24 & 159 & 59 & - & 32 \\
\hline 0 & 23 & 7 & 25 & 154 & 60 & \(\bigcirc\) & \\
\hline 115 & 21 & 20 & 26 & - 49 & 61 & - & 30 \\
\hline 130 & & 46 & 27 & 144 & 62 & - & 28 \\
\hline 145 & 18 & 22 & 28 & 140 & 63 & - & 27 \\
\hline 20 & 17 & 8 & 29 & 1 36 & 64 & \(\bigcirc\) & 26 \\
\hline 230 & 15 & 2 & 30 & & 65 & \(\bigcirc\) & 25 \\
\hline & & 20 & 31 & 128 & 66 & 0 & \\
\hline \(3 \quad 30\) & 11 & 57 & 32 & 125 & 67 & \(\bigcirc\) & 23 \\
\hline 4 - & 10 & 48 & 33 & 122 & 68 & - & 22 \\
\hline 430 & 9 & 50 & 34 & 19 & 69 & \(\bigcirc\) & 21 \\
\hline 5 & & 2 & 35 & & 70 & \(\bigcirc\) & 20 \\
\hline & 8 & 21 & 36 & 113 & 71 & & \\
\hline 6 - & 7 & 45 & 37 & 111 & 72 & \(\bigcirc\) & \\
\hline \(6 \quad 30\) & 7 & 14 & 38 & 18 & 73 & - & 17 \\
\hline 7 0 & 6 & 47 & 39 & 16 & 74 & \(\bigcirc\) & 16 \\
\hline \(7 \quad 30\) & 6 & 22 & 40 & 14 & 75 & \(\bigcirc\) & 15 \\
\hline & 6 & & 41 & & 76 & & \\
\hline 830 & 5 & 40 & \(4^{2}\) & 1 \begin{tabular}{l}
1 \\
\hline
\end{tabular} & 77 & - & \\
\hline 9 - & 5 & 22 & 43 & - \(5^{8}\) & 78 & - & 12 \\
\hline 930 & 5 & 6 & 44 & - \(5^{6}\) & 79 & - & 11 \\
\hline 100 & 4 & 52 & 45 & - 54 & 80 & \(\bigcirc\) & \\
\hline 110 & & & 46 & & 81 & & \\
\hline 12 & 4 & 5 & 47 & - 50 & 82 & - & \\
\hline 13 & 3 & 47 & 48 & - 48 & 83 & \(\bigcirc\) & 7 \\
\hline 14 & 3 & 31 & 49 & - 47 & 84 & \(\bigcirc\) & 6 \\
\hline 15 & 3 & 17 & 50 & - 45 & 85 & - & 5 \\
\hline 16 & & & 51 & - 44 & 86 & - & \\
\hline 17 & 2 & 53 & 52 & - \(4^{2}\) & 87 & - & \\
\hline 18 & 2 & 43 & 53 & - 40 & 88 & - & 2 \\
\hline 190 & 2 & 34 & 54 & - 39 & 89 & \(\bigcirc\) & 1 \\
\hline 20 O & 2 & 26 & 55 & - 38 & 90 & & \\
\hline
\end{tabular}
183. In all observations, to have the true ali. PLATE II. tude of the Sun, Moon, or Stars, the refraction mutt be fubtracted from the observed altitude. But the quantity of refraction is not always the fame at the fame altitude; because heat diminifhes the Air's refractive power and denfity, and cold increales both; and therefore no one table can ferve precifely for the fame place at all feafons, nor even at all times of the fame day, much lefs for different climates; it having been obferved that the horizontal refractions are near a third part leis at the Equator than at Paris, as mentioned by Dr. Smith in the 370th remark on his Optics, where the following account is given of an extraordinary refraction of the Sun-beams by cold. "There is a famous observation of this kind made by forme Hollanders that wintered in Nova Zembla in the year 1596, who were furprized to find, that after a continual night of three months, the Sun began to rife feventeen days fooner than according to computation, deduced from the Altitude of the Pole obferved to be \(76^{\circ}\) : which cannot otherwife be accounted for, than by an extraordinary refraction of the Sun's rays palling through the cold denfe air in that climate. Kepler computes that the Sun was almoft five degrees below the Horizon when he firft appeared; and conequently the refraction of his rays was about nine times greater than it is with us.".
184. The Sun and Moon appear of an oval figure, as \(F C G D\), jut after their riling, and be- Fig. \(x\). fore their fetting: the reafon of which is, the refraction being greater in the Horizon than at any diftance above it, the lower limb \(G\) is more enevated by it than the uppermoft. But although the refraction fhortens the vertical Diameter \(F G\), it has no fenfible effect on the horizontal Diameter \(C D\), which is all equally elevated. When the refracton is To foal as to be imperceptible, the Sun and Moon appear perfectly round, as \(A E B F\).

Our imagination cannot jude e righily of the diftance of inaccepfi'je objects.
185. We daily obferve, that the objects which appear moft diftinct are generally thofe which are neareft to us; and confequently, when we have nothing but our imagination to affift us in eftimating of diftances, bright objects feem nearer to us than thofe which are lefs brighr, or than the fame objects do when they appear lefs bright and worfe defined, even though their diftance in both cafes be the fame. And if in both cafes they are feen under the fame Angle*, our imagination naturally

PLATEII. Fig. V.
- An Angle is the inclination of two right lines, as \(I H\) and \(K H\), meeting in a point at \(H\); and in defcribing an Angle by three letters, the middle letter always denotes the angular point; thus, the above lines \(I H\) and \(K H\) meeting each other at \(H\), make the Angle \(I H K\); and the point \(H\) is fuppofed to be the center of a Circle, the circumference of which contains 360 equal parts, called Degrees. A fourth part of a Circle, called a Quadrant, as GE, contains go degrees; and every Angle is meafored by the number of degrees in the Arc it cuts off; as the Angle EHP is 45 degrees, the Angle EHF 33, \&c. and fo the Angle EHF is the fame with the Angle CHN, and alfo with the Angle \(A H M\), becaufe they all cut off the fame Arc or portion of the Quadrant \(E G\); but the Angle \(E H F\) is greater than the Angle \(\bar{C} H D\) or \(A H L\), becaufe it cuts off a greater Arc.

The nearer an object is to the eye, the bigger it appears, and it is feen under the greater Angle. To illuftrate this a little, fuppofe an Arrow in the pofition \(I K\), perpendicular to the right line \(H A\), drawn from the eye at \(H\) through the middle of the Arrow at \(O\). It is plain that the Arrow is feen under the Angle IHK, and that \(H O\), which is its diftance from the eye, divides into halves both the Arrow and the Angle under which it is feen, quiz. the Arrow into \(10, O K\); and the Angle into IHO and KHO: and this will be the cafe whatever diftance the Arrow is placed at. Let now three Arrows, all of the fame length with \(I K\), be placed at the diftances \(H A, H C, H E\), Atill perpendicular to, and bifected by the right line \(H A\); then will \(A B, C D, E F\), be each equal to, and reprefent \(O I\); and \(A B\) (the fame as \(O I\)) will be feen from \(H\) under the Angle \(A H B\); but \(C D\) (the fame as \(O I\)) will be feen under the Angle CHD; or \(A H L\); and \(E F\) (the fame as \(O I\)) will be feen under the Angle EHF, or CIAN, or AHM. Alfo EF , or O1, at the diftance \(H E\), will appear as long as \(O N\) would at the diftance \(I C\), or as \(A M\) would at the diftance \(H A\); and \(C D\), or 10 , at the diffance \(H C\), will appear as long as \(A L\) fiould as the dif-
rally fuggefts an idea of a greater diftance between us and thofe objects which appear fainter and worfe defined than thofe which appear brighter under the fame Angles; efpecially if they be fuch objects as we were never mear to, and of whofe real Magnitudes we can be no judges by fight.
186. But, it is not only in judging of the different apparent Magnitudes of the fame objects, which are better or worfe defined by their being more or lefs bright, that we may be deceived: for we may make a wrong conclufion even when we view them under equal degrees of brightnefs, and under equal Angles; although they be objects whofe bulks we are generally acquainted with, fuch as houles or trees: for proof of which, the two following inftances may fuffice:

Firf, When a houfe is feen over a very broad river by a perfon ftanding on low ground, who

The reafon affigned. fees nothing of the river, nor knows of it beforehand: the breadth of the river being hid from him, becaufe the banks feem contiguous, he lofes the idea of a diftance equal to that breadth; and the houfe feems fmall, becaufe he refers it to a lefs diftance than it really is at. But, if he goes to a place from which the river and interjacent ground can be feen, though no farther from the houfe, he then perceives the houfe to be at a greater diftance than he imagined; and therefore fancies it to be bigger than he did at firft; although in both cafes it appears under the fame angle, and confequently makes no bigger picture on the retina of his eye in the latter cafe than it did in the former. Many have been deceived, by taking a red coat of arms fixed upon the iron gate in Clare-Hall walks at
tance HA. So that as an object approaches the eye, both its Magnitude and the Angle under which is is feen increafe; and the contrary as the object recedes.
plate:I. Cambridge, for a brick houfe at a much greater diftance*.

Secondly, In foggy weather, at firft fight, we generally imagine a fmall houfe, which is juft at hand, to be a great caftle at a diftance; becaufe it appears fo dull and ill-defined when feen through the Mift, that we refer it to a much greater diftance than it really is at; and therefore, under the fame Angle, we judge it to be much bigger. For
Fig. xiI. the near object \(F E\), feen by the eye \(A B D\), appears under the fame Angle GCH that the remote object \(G H I\) does : and the rays GFCN and HECM, croffing one another at \(C\) in the pupil of the eye, limit the fize of the picture \(M N\) on the retina, which is the picture of the object \(F E\); and if \(F E\) were taken away, would be the picture of the object \(G H I\), only worfe defined; becaufe GHI being farther off, appears duller and fainter than \(F E\) did. But when a Fog, as \(K L\), comes between the eye and the object \(F E\), the object appears dull and ill-defined like \(G H I\); which caufes our imagination to refer \(F E\) to the greater diftance \(C H\), inftead of the fmall diftance \(C E\), which it really is at. And confequently, as mif-judging the diftance does not in the leaft diminifh the Angle under which the object appears, the fmall hay-rick \(F E\) feems to be as big as GHI.
* The fields which are beyond the gate rife gradually till they are jult feen over it; and the arms being red, are often miftaken for a houfe at a confiderable diftance in thofe fields.
I once met with a curious deception in a gentleman's garden at Hackney, occafioned by a large pane of glafs in the gar-den-wall at fone diftance from his houfe. The glafs (through which the fky was feen from low ground) reflected a very faint image of the Houfe; but the image feemed to be in the Clouds near the Horizon, and at that diftance looked as if it were a huge cafte in the Air. Yot the Angle, under which the image appeared, was equal to that under which the houfe was feen: but the image being mentally referred to a much greater diftance than the houle, appeared much bigger to the imagination.
187. The
187. The Sun and Moon appear bigger in the Horizon than at any confiderable height above it. Thefe Luminaries, although at grear diftances from the Earth, appear lloating, as it were, on the furface of our Atmofphere HGFfeC, a little way beyond the Clouds; of which, thofe about \(F\), directly over our heads at \(E\), are nearer us than thofe about \(H\) or \(e\) in the Horizon HEe. Therefore, when the Sun or Moon appear in the Hori-

Why the Sunand Moon appear bigeft in the Ho . riz m . zon at \(e\), they are not only feen in a part of the Sky which is really farcher from us than if they were at any confiderable Altitude, as about \(f\); but they are alfo feen through a greater quantity of Air and Vapours at \(e\) than at \(f\). Here we have two concurring appearances which deceive our imagination, and caufe us to refer the Sun and Moon to a greater diftance at their rifing or fetting about \(e\), than when they are confiderably high, as at \(f\) : firft, their feeming to be on a part of the Atmofphere at \(e\), which is really farther than \(f\) from a fpectator at E; and fecondly, their being feen through a groffer medium, when at \(e\), than when at \(f\); which, by rendering them dimmer, caufes us to imagine them to be at a yet greater diftance. And as, in both cafes, they are feen * much under the fame Angle, we naturally judge them to be biggeft when they feem fartheft from us; like the above-mentioned houfe, \(\S 186\), feen from a higher ground, which fhewed ir to be farther off than it appeared from low ground, or the hay-rick, which appeared at a greater diftance by means of an interpofing Fog.
188. Any one may fatisfy himfelf that the Moon appears under no greater Angle in the Horizon than on the Meridian, by taking a large fheer of paper, and rolling is up in the form of a Tube, of fuch a width, that obferving the Mioon chrough
* The Sun and Moon fubtend a greater Angle on the Me-

Their apparent Dia. meters are nut lefs an the Meridians than in the Horizon. ridian than in the Horizon, being nearer the Obferver's Place in the former cafe than in the latter.
it when the rifes, fhe may, as it were, juft fill the Tube; then tie a thread round it to keep it of that fize; and when the Moon comes to the Meridian, and appears much lefs to the eye, look at her again through the fame Tube, and fhe will fill it juft as much, if not more, than fhe did at her rifing.
189. When the full Moon is in perigee, or at her leaft diftance from the Earth, the is feen under a larger Angle, and mult therefore appear bigger than when the is full at other times; and if that part of the Atmofphere where fhe rifes be more replete with Vapours than ufual, fhe appears fo much the dimmer; and therefore we fancy her to be ftill the bigger, by referring her to an unufually great diftance, knowing that no objects which are very far diftant can appear big unlefs they be really fo.

\section*{C H A P. IX.}

> The Method of finding the Diftances of the Sunn Moon, and Planets.
190. 7 HOSE who have not learnt how to take the * Altitude of any Celeftial. Phenomenon by a common Quadrant, nor know
* The Alcitude of any celeftial Object is an arc of the Sky intercepted between the Horizon and the Object. In Fig.VI. of Plate II. let \(H O X\) be a horizontal line, fuppofed to be extended from the eye at \(A\) to \(X\), where the Sky and Earth feem to meet at the end of a lorg and level plain; and let \(S\) be the Sun. 'The arc \(X Y\) will be the Sun's height above the Horizon at \(X\), ard is found by the inflrument \(E C D\), which is a quadrantal board, or plate of metal, divided into go equal parts or degrees on its limb \(D P C\), and has a couple of little brafs plates, as \(a\) and \(b\), with a fmall hole in each of them, called Sigbt-Holes, for looking through, parallel to the coge of the Quadrant which they fland on. To the center \(E\) is fixed one end of a thread \(F\), called the Plumb-Line, which has a fmall weight or plummet \(P\) 'fixed to its other end. Now, if an obferver holds the Quadrant upright, without inclining it to

any thing of plain Trigonometry, may pafs over the firt Article of this fhort Chapter, and take the Aftronomer's word for it, that the diftances of the Sun and Planets are as ftated in the firft Chapter of this Book. But, to every one who knows how to take the Altitude of the Sun, the Moon, or a Star, and can folve a plain right-angled Triangle, the following method of finding the diftances of the Sun and Moon will be eafily underfood.

Let \(B A G\) be one half of the Earth, \(A C\) its fig. I. femi-diameter, S the Sun, \(m\) the Moon, and EKOL a quarter of the Circle defcribed by the Moon in revolving from the Meridian to the Meridian again. Let \(C R S\) be the rational Horizon of an obferver at \(A\), extended to the Sun in the Heavens; and HAO his fenfible Horizon, extended to the Moon's Orbit. \(A L C\) is the Angle under which the Earth's femi-diameter \(A C\) is feen from the Moon at \(L\), which is equal to the Angle \(O A L\), becaufe the right lines \(A O\) and \(C L\), which include both thefe Angles, are parallel. \(A S C\) is the Angle
either fide, and fo that the Horizon at \(X\) is feen through the fight-holes \(a\) and \(b\), the plumb-line will cut or hang over the beginning of the degrees at 0 , in the edge \(E C\); but if he elevates the Quadrant fo as to look through the fight-holes at any part of the Heavens, fuppofe the Sun at \(S\), juft fo many degrees as he elevates the fight-hole \(b\) above the horizontal line \(H O X\), fo many degrees will the plumb-line cut in the limb \(C P\) of the Quadrant. For, let the obferver's eye at \(A\) be in the center of the celeftial Arc \(\mathbb{Y V}\) (and he may be faid to be in the cenier of the Sun's apparent diurnal Orbit, let him be on what part of the Earth he will) in which Arc the Sun is at that time, fuppofe 25 degrees high, and let the obferver hold the Quadrant fo that he may fee the Sun through the fight holes; the plumb-line freely playing on the Quadrant will cut the 25th degree in the limb \(C P\), equal to the number of degrees of the Sun's Altitude at the time of obfervation. N. B. Whoever looks at the Sun muft have a fmoked glafs before his eyes to fave them from hurt. The better way is not to look at the Sun through the fight-holes, but to hold the Quadrant facing the eye at a little diftance, and fo that the Sun fhining through one hole, the ray may be feen to fall on the other.
under which the Earth's femi-diameter \(\Lambda C\) is feen from the Sun at \(S\), and is equal to the Angle OAf, becaufe the lines \(A O\) and \(C R S\) are parallel. Now it is found by obfervation, that the Angle \(O A L\) is much greater than the Angle \(O A f\); but \(O A L\) is equal to \(A L C\), and OAf is equal to \(A S C\). Now, as \(A S C\) is much lefs than \(A L C\), it proves that the Earth's femi-diameter \(A C\) appears much greater as feen from the Moon at \(L\), than from the Sun at \(S\); and therefore the Earth is much farther from the Sun than from the Moon*. The Quantities of thefe Angles may be determined by obfervation in the following manner:
Let a graduated inftrument, as \(D A E\), (the larger the better) having a moveable Index with Sightholes, be fixed in fuch a manner, that its plane furface may be parallel to the plane of the Equator, and its edge \(A D\) in the plane of the Meridian: fo that when the Moon is in the Equinoctial, and on the Meridian \(A D E\), fhe may be feen through the fight-holes when the edge of the moveable Index cuts the beginning of the divifions at 0 , on the graduated \(\operatorname{limb} D E\); and when he is fo feen, let the precije time be noted. Now, as the Moon revolves a bout the Earth from the Meridian to the Meridian again in about 24 hours 48 minutes, fhe will go a fourth part round it in a fourth part of that cime, viz. in 6 hours 12 minutes, as feen from \(C\), that is, from the Earth's center or pole. But as feen from \(A\), the obferver's place on the Earth's furface, the Moon will feem to have gone a quarter round the Earth when the comes to the fenfible Horizon at \(O\); for the Index through the fights of which the is then viewed will be at \(d\), go degrees from \(D\), where it was when the was feen at E. Now, let the exact moment when the Moon is feen at \(O\) (which will be when fhe is in or near

\footnotetext{
* Sec the Notc on § 185 .
}
the fenfible Horizon) be carefully noted *, that it may be known in what time fhe has gone from \(E\) to \(O\); which time fubtracted from 6 hours 12 minutes (the time of her going from \(E\) to \(L\)) leaves the time of her going from \(O\) to \(L\), and affords an ealy method for finding the Angle OAL (called the Moon's Horizontal Parallax, which is equal to the Angle \(A L C\)) by the following Analogy: As the time of the Moon's defcribing the Arc EO is to 90 degrees, fo is 6 hours 12 minutes to the degrees of the Arc \(D d e\), which meafures the Angle EAL; from which fubtract 90 degrees, and there remains the Angle \(O A L\), equal to the A ngle \(A L C\), under which the Earth's femi-diameter \(A C\) is feen from the Moon. Now, fince all the Angles of a right-lined Triangle are equal to 180 degrees, or to two right Angles, and the fides of a Triangle are always proportionable to the Sines of the oppofite Angles, lay, by the Rule of Three, as the Sine of the Angle \(A L C\), at the Moon \(L\), is to its oppofite fide \(A C\), the Earth's femi-diameter, which is known to be 3985 miles, fo is Radius, viz. the Sine of so degrees, or of the right Angle \(A L C\), to its oppofite fide \(A D\), which is the Moon's diftance at \(L\) from the obferver's place at \(A\) on the Earth's furface; or, fo is the Sine of the Angle CAL to its oppofite fide CL, which is the Moon's diftance from the Earth's center, and comes out at a mean rate to be 240,000 miles. The Angle \(C A L\) is equal to what \(O A L\) wants of 90 degrees.
191. The Sun's diftance from the Earth might be found the fame way, though with more difficulty, if his horizontal Parallax, or the Angle O AS, equal to the Angle ASC, were nut fo finall, as to be hardly perceptible, being fcarce io feconds

The Sun's diftarce cannot be yer lo exaclly derermined ds the Moon's. of a minute, or the \(3^{\text {sorh part of a degree. But }}\)

The Monn's Ciftan:e determined.

The Moon's
horizontal Parallax, uha!.
the Moon's horizontal Parallax, or Angle OAL, equal to the Angle \(A L C\), is very difcernible, being \(57^{\prime} 18^{\prime \prime}\), or \(3438^{\prime \prime}\) at its mean ftate; which is more than 340 times as great as the Sun's: and, therefore, the diftances of the heavenly bodies being inverfely as the Tangents of their horizontal Parallaxes, the Sun's diftance from the Earth is ar leaft 340 times as great as the Moon's; and is rather under-rated at 8 I millions of miles, when the Moon's diftance is certainly known to be 240 thoufand. But becaufe, according to fome Aftronomers, the Sun's horizontal Parallax is in feconds, and according to ochers only 10 , the former Parallax making the Sun's diftance to be about \(75,000,000\) of miles, and the latter \(82,000,000\); we may take it for granted, that the Sun's diftance is not lefs than as deduced from the former, nor more than as fhewn by the latter: and every one, who is accuftomed to make fuch obfervations, knows how hard it is, if not impoffivle, to avoid an error of a fecond; efpecially on account of the inconftancy of horizontal Refractions. And here the error of one fecond, in fo fmall an Angle, will malse an error of 7 millions of miles in fo great a diftance as that of the Sun's. But Dr. Halley has fhewn us how the Sun's diftance from the Earth, and confequently the diftances of all the Planets from the Sun, may be known to within a 500 th part of the whole, by a Tranfit of Venus

How near the troth it miyfon be determined. over the Sun's Difc, which will happen' on the 6rh of une, in the year 1761 ; till which time we muft content ourfelves with allowing the Sun's diftance to be about 81 inillions of miles, as commonly ftated by Aftronomers.

The Sun proved to be ruch bizger than thie Micon.
192. The Sun and Moon appear much about the fame bulk: And every one who underftands Geometry, knows how their true bulks may be deduced from the apparent, when their real diftances are known. Spheres are to one another as the Cubes of their Diameters; whence, if the Sun
be 8 r millions of miles from the Earth, to appear as big as the Moon, whofe diftance does not exceed 240 thoufand miles, he mutt, in folid bulk, be 42 millions 875 thoufand times as big as the Moon.
193. The horizontal Parallaxes are beft obferved at the Equator; I. Becaufe the heat is fo nearly equal every day, that the Refractions are almolt conftantly the fame. 2. Becaufe the parallactic Angle is greater there, (as at \(A\) the diftance from thence to the Earth's Axis being greater), than upon any parallel of Latitude, as \(a\) or \(b\).
194. The Earth's diftance from the Sun being determined, the diftances of all the other Planets from him are eafily found by the following analogy, their periods round him being afcertained by obfervation. As the fquare of the Earth's period round the Sun is to the cube of its diftance from the Sun, fo is the fquare of the period of any other Planet to the cube of its diftance, in fuch parts or meafures as the Earth's diftance was taken;

The rlative diftances of the Planets from the Sun are known to great precifion, though their real diftances are not well known. fee §ili. This proportion gives the relative mean diftances of the Planets from the Sun to the greatelt degree of exactnefs; and they are as follows, having been deduced from their periodical times, according to the law jut mentioned, which was difcovered by Kepler, and demonftrated by Sir Isaac Newton *.
- All the following calculations on the next page, except thofe in the two laft lines before \(\$ 19 ;\), were printed in former editions of this work, hefore the year 176 fr . Since that time, the faid wo lines (as found by the Tranfit A.D. \({ }^{1761}\)) were added; and alfo § 195.

Periodical Revolutions to the fame fixed Star in days and decimal parts of a day.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mercury
\[
87.969=
\] & Venus
\[
2246176
\] & \[
\begin{gathered}
\text { The Earth } \\
3^{6} 5.2564
\end{gathered}
\] & \[
\begin{aligned}
& \text { Mars } \\
& 686.9785
\end{aligned}
\] & Jupiter
\[
4332.514
\] & \[
\begin{aligned}
& \text { Saturn } \\
& 1079.275
\end{aligned}
\] & Georgian
\[
30456.07
\] \\
\hline \multicolumn{7}{|c|}{Kelative mean diltances from the Sun.} \\
\hline 387101 & 7233 & 100000 & 152;6y & 5:0096 & 954006 & 1908 \\
\hline
\end{tabular}

From thefe numbers we deduce, that if the Sun's horizontal Parallax be ro", the real mean diftances of the Planets from the Sun in Englifh Miles are
 But if the Sun's Parallax be \(\mathrm{I}^{\prime \prime}\), their diftances are no more than
\(29,0,52,500 \mid 54,23^{8,570|75,000,000| 114,276,750|390,034,500| 715,504,500 \mid 1,431,435,000}\) Errors in diftance arifing from the miftake of \(1^{\prime \prime}\) in the Sun's Parallax.
\(2,709,700|5,074,490| 7,000,000|10,565,830| 36,444,220|66,780,420| 133,600,600\)
But, from the late Tranfit of Venus, A. D. 1761 , the Sun's Parallas appears to be only \(8^{\prime \prime} \frac{105}{10}\); and according to that, their real diftances in miles are
\(36,841,468|60,891,46|^{2}, 173,127|145,014148| 494990,976|907,956,130| 1,816,455,526\)
And their diameters, in miles, are
32001 9360| \(7970 \mid\) 5150| 97,100| 77,990| 35,226
195. Thefe numbers fhew, that although we have the relative diftances of the Planets from the Sun to the greateft nicety, yet the beft obfervers could not afcertain their true diftances until the late long-wifhed-for Tranfit appeared, in 1761 , which we muft confefs was embarraffed with feveral difficulties. But another Tranfit of Venus over the Sun has now been obferved, on the third of fune 1769 , much better fuited to the refolution of this great Problem than that in 1761 was; and the refult of the obfervations does not differ materially from the refult of thofe in 1761 . A nother tranfic will not happen till the year 1874 .
196. The Earth's Axis produced to the Stars, being carried parallel * ro iffelf during the Earth's annual revolution, deferibes a circle in the Sphere of the fixed Stars equal to the Orbit of the Earth.
* Ry this is meant, that if a line be fuppofed to be drawn parallel to the Earth's Axis in any part of its Orbit, the Axis keeps parallel to that line in every other part of its Orbit: as in lig. I. of Plate V. where abedefgh reprefents the Earth's Orbit in an oblique view, and \(N^{\prime}\) s the Earth's Axis kecping alivays parallel to the line \(M N\).

But this Orbit, though very large, would feem no bigger than a point if it were viewed from the Stars; and confequently the circle deferibed in the Sphere of the Stars by the Axis of the Earth, produced, if viewed from the Earth, mult appear but as a point ; that is, its diameter appears too little to be meafured by obfervation: for Dr. Bradley has affured us, that if it had amounted to a fingle fecond, or two at moft, he fhould have perceived it in the great number of obfervations he has made, efpecially upon \(\gamma\) Draconis; and that it feemed to him very probable that the annual Pa rallax of this Star is not fo great as a fingle fecond; and, confequently, that it is above 400 thoufand times farther from us than the Sun. Hence the celeftial poles feem to continue in the fame points of the Heavens throughout the year; which by no means difproves the Earth's annual motion, bur. plainly proves the diflance of the Stars to be exceeding great.
197. The fmall apparent motion of the Stars, § 113 , difcovered by that great Aftronomer, he found to be no ways owing to their annual Parallax (for it came out contrary thereto), but to the Aberration of their light, which can refult from no known caufe befides that of the Earth's annual motion; and as it agrees fo exactly therewith, it proves, beyond difpute, that the Earth has fuch a motion: for this Aberration completes all its various Phenomena every year; and proves that the velocity of ftar-light is fuch as carries it through a fpace equal to the Sun's diftance from us in 8 minutes 13 feconds of time. Hence the velocity of Light is * 10 thoufand 210 times as great as the Earth's velocity in its Orbit; which velocity (from what we know already of the Earth's diftance from the Sun) may be afferted to be at leaft between 57 and 58 thoufand miles every hour: and fuppofing it to be 58000 , this number multiplied by 10210, gives 592 million 180 thoufand iniles for *. Smath's Optice, § 1197.

PLATE IV.
the hourly motion of Light: which laft number divided by 3600 , the number of feconds in an hour, fhews that Light' flies at the rate of more than 164 thoufands miles every fecond of time, or fwing of a common clock pendulum.

\section*{C H A P. X.}

The Circles of the Globe defcribed. The different lengtbs of days and nigbts, and the viciffitudes of feafons explained. The explanation of the Pbenomena of Seturn's Ring concluded. (See §81 and 82.)
Circles of
che Sphere. \({ }^{198 .}\) F the reader be hitherto unacquainted with the principal circles of the Globe, he fhould now learn to know them; which he may do fufficiently for this prefent purpofe in a quarter of an hour, if he fets the ball of a terreftrial Globe be-

Fig. II.

Equator, Tropics, Polar Cir. cles, and Yoles.

Fig. II.

Earth's Axis, fore him, or looks at the Figure of it, wherein thefe circles are drawn and named. The Equator is that great circle which divides the northern half of the Earth from the fouthern. The Tropics are leffer circles parallel to the Equator, and each of them is \(23^{\frac{1}{2}}\) degrees from it; a degree in this fenfe being the 360 th part of any great circle which divides the Earth into two equal parts. The Tropic of Cancer lies on the north fide of the Equator, and the Tropic of Capricorn on the fouth. The ArEtic Circle has the Nortb Pole for irs center, and is juft as far from the North Pole as the Tropics are from the Equator: and the Antarctic Circle (hid by the fuppofed convexity of the figure) is juft as far from the Soutb Pole every way round it. Thefe Poles are the very north and fouth points of the Globe: and all other places are denominated northward or Joutbward, according to the fide of the Equator they lie on, and the Pole to which they are neareft. The Earth's Axis is a ftraight line pafling through the center of the Earth, perpendicular to the Equator, and terminating in the Poles at its furface. This, in the real Earth and Planets, is only
an inaginary line ; but in artificial Globes or Planets it is a wire by which they are fupported, and turned round in Orreries, or fuch like machines; by wheel-work. The circles 12. 1. 2. 3.4. Es c. are Meridians to all places they pafs through; and we mult fuppofe thoufands more to be drawn, becaufe every place, that is ever fo little to the eaft or weft of any other place, has a different Meridian from that other place. All the Meridians meet in the poles; and whenever the Sun's center is paffing over any Meridian in his apparent motion round the Earth, it is mid-day or noon to all places on that Meridian.
199. The broad Space lying between the Tropics, like a girdle furrounding the Globe, is called the torrid Zone, of which the Equator is in the middle all around. The Space between the Tropic of Cancer and Aretic Circle is called the North temperate Zone. That between the Tropic of Capricorn and the Antarctic Circle, the South temperate Zone. And the two circular Spaces bounded by the Polar Circles are the two frigid Zones; denomi-nated-north or fouth, from that Pole which is in the center of the one or the other of them.
200. Having acquired this eafy branch of knowledge, the learner may proceed to make the following experiment with his terreftrial ball; which will give him a plain idea of the diurnal and annual motions of the Earth, together with the different lengths of days and nights, and all the beautiful variety of feafons, depending on thofe motions.

Take about feven feet of firong wire, and bend it into a circular form, as abcd, which being viewed obliquely, appears elliptical as in the Figure. Place a lighted candle on a table, and having fixed one end of a filk thread \(K\), to the norch pole of a fmall terreftrial Globe \(H\), about three inches diameter, caufe another perfon to hold the wire circle, fo that it may be parallel to the table, and

Fir. III. A pleating experiment, flowing the d fictent lengths of days and night:, and the variety of leafuss.
as high as the flame of the candle \(I\), which frould be in or near the center. Then, having twifted the thread as toward the left hand, that by untwitting it may turn the Globe round eaftward, or contrary to the way that the hands of a watch move, hang the Globe by the thread within this circle, almoft contiguous to it ; and as the thread untwifts, the Globe (which is enlightened half round by the candle as the Earth is by the Sun) will turn round its Axis, and the different places upon it will be carried through the light and dark Hemifpheres, and have the appearance of a regular fucceffion of days and nights, as our Earth has in reality by fuch a motion. As the Globe turns, move your hand nowly, fo as to carry the Globe round the candle according to the order of the letters \(a b c d\), keeping its center even with the wire circle; and you will perceive, that the candle, being fill perpendicular to the Equator, will enlighten the Globe from pole to pole in its whole motion round the circle; and that every place on the Globe goes equally through the light and the dark, as it turns round by the untwitting of the thread, and therefore has a perpetual Equinox. The Globe thus turning round reprefents the Earth turning round its Axis; and the motion of the Globe round the candle reprefents the Earth's annual motion round the Sun, and fhews, that if the Earth's Orbit had no inclination to its Axis, all the days and nights of the year would be equally long, and there would be no different feafons. But now, defire the perfon who holds the wire to hold it obliquely in the pofition \(A B C D\), raifing the fide \(\sigma\) jult as much as he depreffes the fide ro, that the flame may be ftill in the plane of the circle; and twifting the thread as before, that the Globe may turn round its Axis the fame way as you carry it round the candle, that is, from weft to eaft, let the Globe down into the lowermoft part of the wire circle at we, and if the circle be properly inclined, the candle will hine perpendicularly
cularly on the Tropic of Cancer, and the frigid Summer Zone, lying within the artiic or north polar Circle, will be all in the light, as in the Figure; and will keep in the light let the Globe turn round its Axis ever fo often. From the Equator to the north polar Circle all the places have longer days and fhorter nights; but from the Equator to the fouth polar circle juft the reverfe. The Sun does not fet to any part of the north frigid Zone, as fhewn by the candle's fhining on it, fo that the motion of the Globe can carry no place of that Zone into the dark : and at the fame time the South frigid Zone is involved in darknefs, and the turning of the Globe brings none of its places into the light. If the Earth were to continue in the like part of its Orbit, the Sun would never fet to the inhabitants of the north frigid. Zone, nor rife to thofe of the fouth. At the Equator it would be always equal day and night; and as places are gradually more and more diftant from the Equator, toward the arctic Circle, they would have longer days and fhorter nights; while thofe on the fouth fide of the Equator would have their nights longer than their days. In this cafe there would be continual fummer on the north fide of the Equator, and continual winter on the fouth fide of it.

But as the Globe turns round its Axis, move your hand flowly forward, fo as to carry the Globe from \(H\) toward \(E\), and the boundary of light and darknefs will approach toward the north Pole, and recede from the fouth Pole; the northern places will go through lefs and lefs of the light, and the fouthern places through more and more of it; Thewing how the northern days decreafe in length, and the fouthern days increafe, while the Globe proceeds from \(H\) to \(E\). When the Globe is at \(E\), it is at a mean ftate between the lowent and higheft parts of its Orbit; the candle is di- Autumnal rectly over the Equator, the boundary of light Equinux. and darknefs juft reaches to both the Poles, and
all places on the Globe go equally through the light and dark Hemirpheres, fhewing that the days and nights are then equal at all places of the Earth, the Poles only excepted; for the Sun is then ferting to the north Pole, and rifing to the fouth Pole.

Continue moving the Globe forward, and as it goes through the quarter \(A\), the north Pole recedes fill farther into the dark Hemifphere, and the fouth Pole advances more into the light, as the Globe comes nearer to \(\sigma\) : and when it comes there at \(F\), the candle is directly over the Tropic

Winter Solfice. of Capricorn, the days are at the fhorteft, and nights at the longeft, in the northern Hemifphere, all the way from the Equator to the arctic Circle; and the reverfe in the fouthern Hemifphere from the Equator to the antaretic circle; within which Circles it is dark to the north frigid Zone, and light to the fouth.

Continue both motions, and as the Globe moves through the quarter \(B\), the north Pole advances toward the light, and the fouth Pole toward the dark; the days lengthen in the northern He miifphere, and fhorten in the fouthern; and when the Globe comes to \(G\), the candle will be again over the Equator (as when the Globe was at \(E)\), and the days and nights will again be equal as formerly; and the north Pole will be jut coming into the light, the fouth Pole going out of is.

Thus we fee the reafon why the days lengthen and fhorten from the Equator to the polar Circles every year; why there is fometimes no day or night for many turnings of the Earth, within the polar Circles; why there is but one day and one night in the whole year at the Poles; and why the days and nights are equally long all the year round at the Equater, which is always equally cut by the sircle bounding light and darkness.
201. The inclination of an Axis or Orbit is merely relative, becaufe we compare it with fome other Axis or Orbit which we confider as not inclined at all. Thus, our Horizon being level to us, whatever place of the Earth we are upon, we confider it as having no inclination; and yet, if we travel \(\rho 0\) degrees from that place, we fhall then Fig. Im. have a Horizon perpendicular to the former; but it will till be level to us. And if this book be held fo that the * Circle \(A B C D\) be parallel to the Horizon, both the Circle \(a b c d\), and the Thread or Axis \(K\), will be inclined to it. But if the Book or Plate be held fo that the Thread be perpendicular to the Horizon, then the Orbit \(A B C D\) will be inclined to the Thread, and the Orbit abcd perpendicular to it, and parallel to the Horizon. We generally confider the Earth's annual Orbit as hav. ing no inclination, and the Orbits of all the other Planiets as inclined to it, \(\$ 20\).
202. Let us now take a view of the Earth in its annual courfe round the Sun, confidering its Orbit as having no inclination, and its Axis as inclining \(23 \frac{1}{2}\) degrees from a line perpendicular to the plane.of its Orbit, and keeping the fame oblique direction in ali parts of its annual courfe; or, as commonly termed; keeping always parallel to itfelf, § 196.

Let \(a, b, c, d, e, f, g, b\) be the Earth in eight different PLate \(v\). parts of its Orbir, equidiftant from one another; Fig. I. \(N\) s its Axis, \(N\) its north Pole, s its fouth Pole, and \(S\) the Sun nearly in the center of the Earth's Orbit, §18. As the earth goes round the Sun
* All Circles appear elliptical in an oblique view, as is evident by looking obliquely at the rim of a baion. For the true figure of a Circle can only be feen when the eye is directly over its center. The more obliquely it is viewed, the more ellipstical it appers, uncil the eye be in the fame plane with is, and then is appeass like a fraighs line.
plate \(v\). according to the order of the letters \(a b c d, \& c\). its Axis Ns keeps the fame obliquity, and is ftill

A concife view of the feafons.

Fig. II.

The fearin: Shewn in another view if the Edr hand Les Orb:t. parallel to the line \(M N s\). When the Earth is at \(a\), its north pole inclines toward the Sun \(S\), and brings all the northern places more into the light than at any other time of the year. But when the Earth is at \(c\) in the oppofite time of the year, the north Pole declines from the Sun, which occafions the northern places to be more in the dark than in the light; and the reverfe at the fouthern places, as is evident by the Figure, which I have taken from Dr. Long's Aftronomy. When the Earth is either at \(c\) or \(g\), its Axis inclines not either to or from the Sun, but lies fidewife to him; and then the Poles are in the boundary of light and darknefs; and the Sun, being directly over the Equator, makes equal day and night at all places. When the Earth is at \(b\), it is half-way between the Summer Solftice and Harvelt Equinox; when it is at \(d\), it is half-way from the Harveft Equinox to the Winter Solftice; at \(f\), half-way from the Winter Solftice to the Spring Equinox: and at \(b\), half-way from the Spring Equinox to the Summer Solftice.

Circle the parallel of London, \(U\) the aretic or north polar Circle, and \(P\) the north Pole, where all the Meridians or Hour-Circles meet, §198. As the Earth goes round the Sun, the north Pole keeps conttantly toward one part of the Heavens, as it does in the figure toward the right-hand fide of the Plate.

When the Earth is at the beginning of Libra, namely, on the 20th of March, in this Figure (as at \(g\) in Fig, I.) the Sun \(S\), as feen from the Earth, appears at the beginning of Aries, in the oppofire part of the Heavens*, the north Pole is juft coming into the light, and the Sun is vertical to vernal the Equator; which, together with the Tropic of Equinox, Cancer, parallel of London, and arctic Circle, are all equally cut by the Circle bounding light and darknefs, coinciding with the fix-o'clock HourCircle, and therefore the days and nights are equally long at all places: for every part of the Meridians \(A T L a\) comes into the light at fix in the morning, and revolving with the Earth according to the order of the hour-letters, goes into the dark at fix in the evening. There are 24 Meridians or Hour-Circles drawn on the Earth in this Figure, to thew the Time of Sun rifing and fetting at different Seafons of the year.

As the Earth moves in the Ecliptic according to the order of the letters \(A B C D, \& c\). through the Signs Libra, Scorpio, and Sagittarius, the north Pole \(P\) comes more and more into the light; the days increafe as the nights decreafe in length, at all places north of the Equator \(E\); which is plain by viewing the Earth at \(b\) on the 5 th of May, when it is in the \(15^{\text {th }}\) degree of Scorpiot, and

\footnotetext{
* Here we mufl fuppofe the Sun to be no bigger than an ordinary point (as .) becaufe he only covers a Circle half a degree in diameter in the Heavens; whereas in the figure he hides a whole fign at once from the Earth.
\(t\) Here we muft fuppofe the Earth to be a much fmaller point than that in the preceding note marked for the Sun.
}

Plate v. the Sun, as feen from the Earth, appears in the 15 th degree of Taurus. For then, the Tropic of Cancer
Fig. II.

Summer

Sulfice.

Au'umnal Equinux. \(\tau\) is in the light from a little after five in the morning till almoft feven in the evening; the parallel of London from half a hour paft four till half a hour paft feven; the polar Circle \(U\) from three till nine; and a large track round the north Pole \(P\) has day all the 24 hours, for many rotations of the Earth on its Axis.

When the Earth comes to \(c\), at the beginning of Capricorn, and the Sun, as feen from the Earth, appears at the beginning of Cancer, on the 21 ft of 7une, as in this Figure, it is in the pofition a in Fig. I.; and its north Pole inclines toward the Sun, fo as to bring all the north frigid Zone into the light, and the northern parallels of Latitude more into the light than the dark from the Equator to the polar Circle; and the more fo as they are farther from the Equator. The Tropic of Cancer is in the light from five in the morning till feven at night; the parallel of London from a quarter before íour till a quarter after eight; and the polar Circle juft touches the dark, lo that the Sun has only the lower half of his Difc hid from the inhabitants on that Circle for a few minutes about midnight, fuppofing no inequalities in the Horizon, and no refractions.

A bare view of the Figure is enough to fhew, that as the Earth advances from Capricorn toward Aries, and the Sun appears to move from Cancer toward Libra, the north Pole advances toward the dark, which caufes the days to decreare, and the nighis to increale in length, till the Earth comes to the beginning of Aries, and then they are equal as before; for the boundary of light and darknefs cuts the Equator and all its parallels equally, or in halves. The north Pole then goes into the dark, and continues in it until the Earth goes half way round irs Orbit; or, from the 23 d of September till the \(20: 1\) of waich. In the middle
between thefe times, viz. on the 22 d of December, the north Pole is as far as it can be in the dark, which is \(23 \frac{1}{2}\) degrees, equal to the inclination of the Earth's Axis from a perpendicular to its Orbit: and then the northern parallels are as much in the dark as they were in the light on the 2 It of 7 une; the winter nights being as long as the fummer days, and the winter days as thort as the fummer nights. It is needlefs to enlarge farther on this fubject, as we thall have occafion to mention the feafons again in defcribing the Orrery, \$397. Only this muft be noted, that whatever has been faid of the northern Hemifphere, the contrary mult be underftood of the fouthern; for on different fides of the Equator the feafons are contrary, becaufe, when the northern Hemifphere inclines toward the Sun, the fouthern declines from him.
204. As Saturn goes round the Sun, his obliquely pofited ring, like our Earth's Axis, keeps parallel to itfelf, and is therefore turned edgewife to the Sun twice in a Saturnian year, which is almolt as long as 30 of our years, \(§ 8 \mathrm{I}\). But the ring, though confiderably broad, is too thin to be feen by us when it is turned edgewife to the Sun, at which time it is alfo edgewife to the Earth; and therefore it difappears once in every fifteen years to us. As the Sun thines half a year together on the north Pole of our Earth, then difappears to it, and thines as long on the fouth Pole; fo, during one half of Saturn's year, the Sun fhines on the north fide of his ring, then difappears to it, and fhines as long on its fouth fide. When the Earth's Axis inclines neither to nor from the Sun, but fidewife to him, he infantly ceafes to Thine on one Pole, and begins to enlighten the other; and when Saturn's ring inclines neither to nor from the Sun, but fidewife
platev. to him, he ceafes to fline on the one fide of it, and begins to fhine upon the other.
Fig. 111. Let \(S\) be the Sun, \(A B C D E F G H\) Saturn's Orbit, and IKLMNO the Earth's Orbit. Both Saturn and the Earth move according to the order of the letters, and when Saturn is at \(A\) his ring is turned edgewife to the Sun \(S\), and he is then feen from the Earth as if he had loft his ring, let the Earth be in any part of its Orbit whatever, except between \(N\) and \(O\); for while it defcribes that fpace, Saturn is apparently fo near the Sun as to be hid in his beams. As Saturn goes from \(A\) to \(C\), his ring appears more and more open to the Earth: at \(C\) the ring appears moft open of all; and feems to grow narrower and narrower as Saturn goes from \(C\) to \(E\); and when he comes to \(E\), the ring is again turned edgewife both to the Sun and Earth; and as neither of its fides are illuminated, it is invifible to us, becaufe its edge is too thin to be perceptible; and Saturn appears again as if he had loft his ring. But as he goes from \(E\) to \(G\), his ring opens more and more to our view on the under fide; and feems juft as open at \(G\) as it was at \(C\); and may be feen in the night-time from the Earth in any part of its Orbit, except about \(M\), when the Sun hides the Planet from our view. As Saturn goes from \(G\) to \(A\), his ring turns more and more edgewife to us, and therefore it feems to grow narrower and narrower; and at \(A\) it difappears as before. Hence, while Saturn goes from \(A\) to \(E\), the Sun mines on the upper fide of his ring, and the under fide is dark; and while he goes from \(E\) to \(A\), the Sun fhines on the under fide of his ring, and the upper fide is dark.

It may perhaps be imagined that this Arcicle might have been placed more properly after \(\$ 81\), than here; but when the candid reader confiders

Fig. I, and 11. that all the various Phenomena of Saturn's Ring depend upon a caufe fimilar to that of our Earch's fealons,
\(i\)
3
;
-

feafons, he will readily allow that they are beft ex-
PLATE V1. plained together; and that the two Figures ferve to illuttrate each other.
205. The Earth's Orbit being elliptical, and the Sun keeping conitantly in its lower Focus, which is \(\mathrm{r}, 377,000\) miles from the middle point of the longer Axis, the Earth comes twice fo much, or \(2,754,000\) miles nearer the Sun at one time of the year than at another: for the Sun appearing under a larger Angle in our winter than fummer, proves that the Earth is nearer the Sun in winter (\(e e\) the Note on Article 185). But here this natural quettion will arife, why have we not the hotteft weather when the Earth is neareft the Sun? In anfwerit muft be obferved, that the excentricity of the Earth's Orbit, or \(1,377,000\) miles, bears no greater proportion to the Earth's mean diftance from the Sun, than 17 does to 1000 ; and therefore this fmall difference of diftance cannot occafion any great difference of heat or cold. But the principal caufe of this difference is, that in winter the Sun's rays fall fo obliquely upon us, that any given number of them is fpread over a much greater portion of the Earth's furface where we live, and therefore each point muft then have fewer rays than in fummer. Moreover, there comes a greater degree of cold in the long winter nights, than there can return of heat in lo Short days; and on both thefe accounts the cold muft increafe. But in fummer the Sun's rays fall more perpendicularly upon us, and therefore come with greater force, and in greater numbers on the fame place; and by their long continuance, a much grearer degree of heat is imparted by day than can lly off by night.
206. That a greater number of rays fall on the fame place, when they come perpendicularly, than when they come obliquely on ic, will appear by the Figure. For, let \(A B\) be a certain number of Fig. It. the Sun's rays falling on \(C D\) (which let us fuppole to be London) on the 2 Ift of yunc: but, on
the \(22 d\) of December, the line \(C D\), or London, has the oblique pofition Cd to the fame rays; and therefore fcarce a third part of them falls upon it, or only thofe between \(A\) and \(e\); all the reft \(e B\) being expended on the face \(d P\), which is more than double the length of \(C D\) or \(C d\). Befides, thofe parts which are once heated, retain the heat for fome tine; which, with the additional heat daily imparted, makes it continue to increafe, though the Sun declines toward the South: and this is the reafon why \(\mathcal{F u l y}\) is hotter than \(\mathcal{F} u n e\), although the Sun has withdrawn from the Summer Tropic; as we find \(i t\) is generally hotter at three in the afternoon, when the Sun has gone toward the weft, than at noon when he is on the Meridian. Likewife, thofe places which are well cooled require time to be heated again; for the Sun's rays do not heat even the furface of any body till they have been fome time upon it. And therefore we find Fanuary for the molt part colder than December, although the Sun has withdrawn from the winter Tropic, and begins to dart his beams more perpendicularly upon us, when we have the polition CF. An iron bar is not heated immediately upon being put into the fire, nor grows cold till fome time after it has been taken out.

\section*{C H A P. XI.}

Tbe Metbod of finding the Longitude by the Eclipfes of Tupiter's Satellites: The amazing Velocity of Ligbt diemonftrated by thefe Eclipfes.

Fire Myet- 207. Fographers arbitrarily choofe to call the dian. and bavigiture e"plar, what.
ardion There they begin their recloninge firft Meridian. There they begin their reckoning; and juft fo many degrees and minutes as any ocher place is to the eaftward or weftward of that Meridian, fo much ealt or weft Longitude they fay it has. A degree is the 360 h part of a Circle, be it
great or finall; and a minute the 6oth part of a platev. degree. The Englifh Geographers reckon the Longitude from the Meridian of the Royal Obfervatory at Greenwich, and the Frencb from the Meridian of Paris.
208. If we imagine twelve great Circles, one of which is the Meridian of any given place, to interfect each other in the two Poles of the Earth, and to cut the Equator \(X E\) at every 15 th degree, they will be divided by the poles into 24 Semi-circles, which divide the Equator into 24 equal parts; and as the Earth turns on its Axis, the planes of thefe Semi-circles come fucceffively one after another every hour to the Sun. As in a hour of time there is a revolution of fifteen degrees of the Equator, in a minute of time there will be a revoluion of 15 minutes of the Equator, and in a fecond of time a revolution of 15 feconds. There are two tables annexed to this.Chapter, for reducing mean folar time into degrees and minutes of the terreftrial Equator; and alfo for converting degrees and parts of the Equator into mean folar time.
209. Becaufe the Sun enlightens only one half of the Earth at once, as it turns round its Axis, he rifes to fome places at the fame moment of abfolute Time that he fets at to others; and when it is mid-day to fome places, it is mid-night to others. The XII on the middle of the Earth's enlightened fide, next the Sun, fands for mid-day; and the oppofite XII, on the middle of the dark fide, for mid-night. If we fuppofe this Circle of hours to be fixed in the plane of the Equinoctial, and the Earth to turn round within it, any particular Meridian will come to the different hours fo, as to Shew the true time of the day or night at all places on that Meridian. Therefore,
210. To every place 15 degrees eaftward from any given Meridian, it is noon a hour founer than on that Meridian; becaufe their Meridian comes
to the Sun a hour fooner: and to all places 15 degrees weftward, it is noon a hour later, \(\S 208\), becaufe their Meridian comes a hour later to the Sun; and fo on: every 15 degrees of motion caul-

And confequently to 15 degree: of Langisude.

Lunareclipfes ufeful in finding the Longitude.

Eclipfes of Jupiter's Satellires much better for that purpofe. ing a hour's difference of cime. Therefore they who have noon a hour later than we, have their Meridian, that is, their Longitude, 15 degrees weftward from us; and they who have noon a hour fooner than we, have their Meridian 15 degrees eaftward from ours: and fo for every hour's difference of time 15 degrees difference of Longitude. Confequently, if the beginning or ending of a Lunar Eclipfe be obferved, fuppofe at L.ondon, to be exactly at mid-night, and in fome other place at II at night, that place is 15 degrees weftward from the Meridian of London: if the fame Eclipfe be obferved at one in the morning at another place, that place is 15 degrees eaftward from the faid Meridian.
211. But as it is not eafy to determine the exact moment either of the beginning or ending of a LunarEclipfe, becaufe the Earth's fhadow through which the Moon paffes is faint and ill-defined about the edges, we have recourfe to the Eclipfes of Jupiter's Satellites, which difappear much more quickly as they enter into Jupiter's fhadow, and emerge more fuddenly out of it . The firf or neareft Satellite to Jupiter is the molt advantageous for this purpofe, becaufe its motion is quicker than the motion of any of the reft, and therefore its immerfions and emerfions are more frequent and more fudden than thofe of ochers are.
212. The Englifh Aftronomers have calculated Tables for hhewing the times of the Ecliples of Jupiter's Satellites to great precifion, for the Meridian at Greenzich. Nuw, let an obferver, who has the fe Tables, with a good Telefcope and a wellregulated Clock, at any other place of the Earth, oblerve the beginning or ending of an Eicliple of
one of Jupiter's Satellites, and not the precife mo. ment of time that he faw the Satellite either immerge into, or emerge out of the fhadow, and compare that time with the time fhewn by the Tables for Greentuich; then 15 degrees difference of Longitude being allowed for every hour's difference of time, will give the Longitude of that place from Greerwich, as above, \(\$ 210\); and if there be any odd minutes of time, for every minute a quarter of a degree, eaft or weft, muft be allowed, as the time of obfervation is later or earlier than the time fhewn by the Tables. Such Eclipfes are very convenient for this purpofe at land, becaufe they happen almoft every day; but are of no ufe at fea, becaufe the rolling of the fhip hinders all nice telefcopical obfervations.
213. To explain this by a Figure, let 7 be Fig. II. Jupiter, \(K, L, M, N\), his four Satellites in their refpective Orbits 1, 2, 3, 4; and let the Earth be at \(f\), fuppofe in November, although that Month is no otherwife material than to find the Earth readily in this fcheme, where it is fhewn in eight different parts of its Orbit. Let 2 be a place on the Meridian of Greenzeich, and \(R\) a place on fome other Meridian eaftward from Greenwich. Let a perfon at \(R\) obferve the inftantaneous vanihh-

\footnotetext{
Illufrated
} by an example.
platev.
How to folve this important problem. ing of the firt Satellite \(K\) into Jupiter's תhadow, fuppofe at three in the morning; but by the Tables he finds the immerfion of that Satellite to be at mid-night at Greenrevicb: he can then immediately determine, that, as there are three hours difference of time between 2 and \(R\), and that \(R\) is three hours forwarder in reckoning than 2 , it murt be 45 degrees of eaft Longitude from the Meridian of Q. Were this method as practicable at fea as at land, any failor might alinott as eafily, and with almoft equal certainty, find the Longitude as the Latitude.
214. While the Earth is going from \(C\) to \(F\) in Fig. 11. its Orbit, only the immerfons of Jupiter's Satel-

We fellom fee the bee ginai rand end of the fame Eclipfe of any of Jupiter's Munas.
lites into his fhadow are generally feen; and their emerfions out of it while the Earth goes from \(G\) to \(B\). Indeed, both thefe appearances may be feen of the fecond, third, and fourth Satellite when eclipfed, while the Earth is between \(D\) and \(\vec{E}\), or between \(G\) and \(A\); but never of the firft Satellite, on account of the finallnefs of irs Orbit and the bulk of Jupiter; except only when Jupiter is directly oppofite to the Sun, that is, when the Earth is at \(g\) : and even then, friclly fpeaking, we cannot fee either the immerfions or emerfions of any of his Satellites, becaufe his body being directly between us and his conical fhadow, his Satellites are hid by his body a few moments before they touch his Madow; and are quite emerged from thence before we can fee them, as it were, juft dropping from behind him. And when the Earth is at \(c\), the Sun, being between it and Jupiter, hides both him and his moons from us.

In this Diagram, the Orbits of Jupiter's Moons are drawn in true proportion to his diameter; but in proportion to the Earth's Orbit, they are drawn 8 I times too large.
215. In whatever month of the year Jupiter is Jufiter"s co juncti. ons with the Sun, or oppofitionsto him, are every year in different par:s of the Hearens. in conjunttion with the Sun, or in oppofition to him, in the next year it will be a month later as lealt. For while the Earth goes once round the Sun, Jupiter defcribes a twelfth part of his Orbit. And therefore, when the Earth has finifhed its annual period from being in a line with the Sun and Jupiter, ir muft go as much forwarder as Jupiter has moved in that time, to overtake him again: just like the minute-hand of a watch, which muft, from any conjunction with the hourhand, go once round the dial-plate and fomewhat abuve a twelfth part more, to overtake the hourhand again.
216. It is found by obfervation, that when the Earth is between the Sun and Jupiter, as at \(g\), his Satellites

Satellites are eclipfed about 8 minutes fooner than they fhould be according to the Tables; and when the Earth is at \(B\) or \(C\), thefe Ecliples happen about 8 minutes later than the Tables predict them. Hence it is undeniably certain, that the motion of Light is nor inftantaneous, fince it takes about \(16 \frac{1}{2}\) minutes of time to go through a fpace equal to the diameter of the Earth's Orbir, which is 190 millions of miles in length; and confequently the particles of Light fly about 193 thoufand 939 miles every fecond of time, which is above a million of times fwifter than the motion of a cannon-ball. And as light is \(16 \frac{1}{2}\) minutes in travelling acrofs the Earth's Orbit, it mutt be \(\delta_{\frac{1}{4}}\) minutes in coming from the Sun to us; there-

The furdrife ing velocity of Light. fore, if the Sun were annihilated, we Chould fee him for \(8 \frac{x}{4}\) minutes after; and if he were again created, he would be \(8 \frac{1}{4}\) minutes old before we could fee him.
217. To explain the progreflive motion of Fis.v. Light, let \(A\) and \(B\) be the Earth, in two different parts of its Orbit, whofe diftance from each other is 95 millions of miles, equal to the Earth's diftance from the Sun \(S\). It is plain, that if the Illumfrated motion of Light were inftantaneous, the Satellite bya Figure. I would appear to enter into Jupiter's fhadow FF at the fame moment of time to a fpectator in \(A\) as to another in \(B\). But by many years obfervations it has been found, that the immerfion of the Satellite into the fhadow is feen \(8 \div\) minutes fooner when the Earth is at \(B\), than when it is at \(A\). And fo, as Mr. Roemer firf difcovered, the motion of Light is thereby proved to be progretive, and not inftantaneous, as was formerly believed. It is eafy to compute in what time the Earth moves from \(A\) to \(B\); for the Chord of 60 degrees of any Circle is equal to the Semi-diamerer of that Circle; and as the Earth goes through all the 360 degrees of its Orbir in a year, it goes through 60 of thote degrees in about 5 d days. Therefore,
if on any given day, fuppofe the firft of fune, the Earth is at \(A\), on the firft of Auguft it will be at \(B\) : the chord, or traight line \(A B\), being equal to \(D S\), the Radius of the Earth's Orbit, the fame with \(A S\), its diftance from the Sun.
218. As the Earth moves from \(D\) to \(C\), through the fide \(A B\) of its Orbit, it is conttantly meeting the light of Jupiter's Satellites fooner, which occafions an apparent acceleration of their Eclipfes: and as it moves through the other half \(H\) of its Orbit from \(C\) to \(D\), it is receding from their light, which occafions an apparent retardation of their Ecliples, becaufe their light is then longer before it overtakes the Earth.
219. That thefe accelerations of the immerfions of Jupiter's Satellites into his fhadow, as the Earch approaches toward Jupiter, and the retardations of their emerfions out of his fhadow, as the Earth is going from him, are not occalioned by any inequality arifing from the motions of the Satellites in excentric Orbits, is plain, becaufe it affects them all alike, in whatever parts of their Orbits they are eclipfed. Befides, they go often round their Orbits every year, and their motions are no way commenfurate to the Earth's. Therefore, a Phenomenon, not to be accounted for from the real motions of the Satellites, but fo eafily deducible from the Earth's motion, and fo anfwerable thereto, muft be allowed to refult from it. This affords one very good proof of the Earth's annual motion.
220. TABLES for converting mean folar Time into Degrees and Paits of the terreftrial EQuator; and alfo for converting Degrees and Parts of the Equator into mean folar Time.
Table I. Forconverting Timeinto
Degrees and Parts of the Equator.

There are the Tables mentioned in the 203th article, and are fo eafy that they fcarce require any farther explanation than to inform the reader, that if, in Table I. he reckons the columns marked with Afterifks to be minutes of time, the other columns give the equatoreal parts or motion in degrees and minutes; if he reckons the Afterifk columns to be feconds, the others give the motion in minutes and feconds of the Equator; if thirds, in feconds and thirds: And if in Table II. he reckons the Afterifk columns to be degrees of motion, the others give the time anfwering thereto in hours and minutes; if minutes of motion, the time is minutes and feconds; if feconds of motion, the correfponding time is given in leconds and thirds. An example in each cafe will make the whole very plain.

Example I.
In 10 hours 15 mi nutes 24 feconds 20 thirds, \(\mathcal{Q}^{2} u\). How much of the Equator revolves through the Meridian?

Deg. M. S.
\begin{tabular}{lrrr|}
Hours 10 & 150 & 0 & 0 \\
Min. & 15 & 345 & 0 \\
Sec. & 24 & 6 & 0 \\
Thirds 20 & & & 5
\end{tabular}
Anfwer \(\overline{15351 \quad 5}\)

Example II.
In what time will 153 degrees 51 minutes 5 feconds of the Equator revolve through the Me eridian?
H. M. S. T

Deg. \(\left\{\begin{array}{rrrrr}150 & 10 & 0 & 0 & 0 \\ 3 & 12 & 0 & 0 \\ \text { Min. } & 51 & 324 & 0 \\ \text { Sec. } & 5 & & & 20\end{array}\right)\)
Anfwer 10152420
C H A P. XII.
Of Solar and Sydereal Time.

Sydereal dayo fioter thanfelar days, and why.
221.

THE Stars appear to go round the Earth in 23 hours 56 minutes 4 feconds, and the Sun in 24 hours: fo that the Stars gain three minutes 56 feconds upon the Sun every day, which
amounts to one diurnal revolution in a year; and therefore, in 365 days, as meafured by the returns

PLATE
II. of the Sun to the Meridian, there are 366 days, as meafured by the Stars returning to it; the former are called Solar Day's, and the latter Sydereal.

The diameter of the Earth's Orbic is but a phyfical point in proportion to the diftance of the Stars; for which reafon, and the Earth's uniform motion on its Axis, any given Meridian will revolve from any Star to the fame Star again in every abfolute turn of the Earth on its Axis, without the leaft perceptible difference of time fhewn by a Clock which goes exactly true.

If the Earth had only a diurnal motion, without an annual, any given Meridian would revolve from the Sun to the Sun again in the fame quantity of time as from any Star to the fame Star again; becaufe the Sun would never change his place with refpect to the Stars. But, as the Earth advances almoft a degree eaftward in its Orbit in the time that it turns eaftward round its Axis, whatever Star paffes over the Meridian on any day with the Sun, will pafs over the fame Meridian on the next day when the Sun is almoft a degree fhort of it; that is, 3 minutes 56 feconds fooner. If the year contained only 360 days, as the Ecliptic does 360 degrees, the Sun's apparent place, fo far as his motion is equable, would change a degree every day; and then the fydereal days would be juft 4 minutes thorter than the fular.

Let \(A B C D E F G H I K L M\) be the Earth's Orbit, Fig.in, in which it goes round the Sun every year according to the order of the letters, that is, from weft to ealt; and curns round its \(A\) xis the fame way from the Sun to the Sun again in every 24 hours. Let \(S\) be the Sun, and \(R\) a fixed Star-at fuch an immenfe diftance, that the diameter of the Earth's Orbit bears no fenfible proportion to that diftance. Let \(N m\) be any particular Meridian of the Earth, and \(\mathrm{N}_{\text {a }}\) given point or place upon that Meridian.

When the Earth is at \(\mathcal{A}\), the Sun \(S\) hides the Star \(R\), which would be always hid if the Earth never removed from \(A\); and confequently, as the Earth turns round its Axis, the point \(N\) would always come round to the Sun and Star at the fame time. But when the Eiarth has advanced, fuppofe a twelfth part of its Orbit from \(A\) to \(B\), its motion round its Axis will bring the point \(N\) a twelfth part of a natural day, or rwo hours, fooner to the Star than to the Sun; for the Angle \(N B n\) is equal to the Angle \(A S B\) : and therefore any Star, which comes to the Meridian at noon with the Sun when the Earth is at \(A\), will come to the Meridian at 10 in the forenoon when the Earth is at \(B\). When the Earth cones to \(C\), the point \(N\) will have the Star on its Meridian at 8 in the morning, or four hours fooner than it comes round to the Sun; for it muft revolve from \(N\) to \(n\) before it has the Sun in its Meridian. When the Earth comes to \(D\), the point \(N\) will have the Star on its Meridian at 6 in the morning, but that point muft revolve fix hours more from \(N\) to in, before it has mid-day by the Sun: for now the Angle \(A S D\) is a right Angle, and to is NDn; that is, the Earth has advanced 90 degrees in its Orbit, and muft turn 90 degrees on its \(A\) xis to carry the point \(N\) from the Star to che Sun: for the Star alway's comes to the Meridian when \(N^{T}\) is parallel to \(R S A\); becaufe \(D S\) is but a point in refpect of \(R S\). When the Earth is at \(E\), the Star comes to the Meritian at 4 in the morning; at \(F\), at 2 in the morning; and at \(G\), the Easth having grone half round its Orbit, \(N\) points to the Star \(R\) at midnight, it being then directly oppointe to the Sun. And therefore, by the Larth's diumal motion, the Star comes to the Meridian 12 hours beiore the Sun. When the Larth is at \(H\), the Star comes to the Meridian at 10 in the evening; at \(I\) it comes to the Meridian at 8 , that is, 16 hours before the Sun; at \(K\) I 8 hours before him; at \(L 20\) hours; at \(M 22\); and at \(A\) equally with the Sun again.

A TABLE, fhewing how much of che Celeftral Equall pafies over the Meridian in any Part of a mean Sola. Day; and how much the Fixed Stars gain upon th mean Solar Time every Day, for a Monch.

PLATE 111.

Ansblolute turn of the Earthon its Axis never finifhes a fular day.
222. Thus it is plain, that an abfolute turn of the Earth on its Axis (which is always completed when any particular Meridian comes co be parallel to its firuation at any time of the day before) never brings the fame Meridian round from the Sun to the sun again; but that the Earth requires as much more than one turn on its Axis to finifh a natural day, as it has gone forward in that time; which, at a mean ftate, is a 365 th part of a Circle. Hence, in 365 days, the Earch turns 366 times round its Axis; and therefore, as a turn of the Earth on its Axis completes a fydereal day, there muft be one fydereal day more in a year than the number of folar days, be the number what it will on the Earth, or any other Planer, one turn being lof with refpect to the number of folar days in a year, by the Planet's going round the Sun; juft as it would be lof to a traveller, who, in going round the Liarth, would lofe one day by following the apparent diurnal motion of the Sun; and confequently would reckon one day lefs at his return (let him take what time he would to go round the Earth) than thole who remained all the while at the place from which he fer out. So, if there were two Earths revolving equally on their Axis, and if one remained at \(A\) until the other had gone round the Sun from \(A\) to \(A\) again, tbat Earth which kept its place at \(A\) would have iss folar and fydereal days always of the fame length; and fo would have one folar day more than the other at its return. Hence, if the Earth curned but once sound its Axis in a year, and if that curn was made the fame way as the Earth goes round the Sun, there would be continual day on one fide of the Earth, and continual night on the other.
223. The firt part of the preceding Table fhews how much of the celeftial Equator parfes over the Meridian in any given part of a mean folar day, and is to be underfood the fame way as the Table in the 220 th article. The latter part, intituled,

Aiccelerations of the fixed Stars, affords us an eafy Toknowby method of knowing whether or no our clocks and watches go true: for if, through a fmall hole in a window-fhutter, or in a chin plate of metal fixed to the Stars whether a a window, we obferve at what time any Star difappears behind a chimney, or corner of a houfe, at a little diftance; and if the fame Star difappears the next night 3 minutes 56 feconds fooner by the clock or watch; and on the fecond night, 7 mi nutes 52 feconds fooner; the third night \(11 \mathrm{mi}-1\) nutes 48 feconds fooner; and fo on, every night, as in the Table, which fhews this difference for 30 natural clays, it is an infallible fign that the machine goes true; otherwife it does not go true, and mult be regulated accordingly; and as the difappearing of a Star is inftantaneous, we may depend on this information to half a fecond.

\section*{C H A P. XIII.}

\section*{Of the Equation of Time.}
224. HE Earth's motion on its Axis being perfectly uniform, and equal at all times of the year, the fydereal days are always precifely of an equal lengrh; and fo would the folar or natural days be, if the Earth's Orbit were a perfect Circle, and its Axis perpendicular to irs Orbit. But the Earth's diurnal motion on an inclined Axis, and its annual motion in an elliptic Orbit, caufe the Sun's apparent motion in the Heavens to be unequal: for fometimes he revolves from the Meridian to the Meridian again in fomewhat lefs than 24 hours, fhewn by a well-regulated clock;

The Sun and Clocks equal only on four days of the year. and at ottrer times in fomewhat more: fo that the time fhewn by an equal-going clock and a true Sun-dial is never the fame but on the 14 th of April, the 15 th of Fune, the 3 Ift of Auguf, and the 23d of December. The clock, if it goes equably and true all the year round, will be before the Sun
from the 23 d of December till the 14th of April; from that time till the 16 th of Yune the Sun will be before the clock; from the is th of June till the 3 It of Auguft the clock will be again before the Sun; and from thence to the 23 d of December the Sun will be fafter than the clock.

Ufe of the Lquaison Tatie.
225. The 1 ables of the Equation of natural days, at the end of the following Chapter, thew the time that ought to be pointed our by a well-regulated clock or watch, every day of the year, at the precife moment of lular noon; that is, when the Sun's center is on the Nierician, or when a true Sun-dial fhews it to be precifely Twelve. Thus, on the 5 th of fanuary in L-eap-year, when the Sun is on the Meridian, it ought co be 5 minutes 52 feconds palt twelve by the clock: and on the 1 sth of May, when the Sun is on the Meridian, the time by the clock fhould be but 56 minutes i fecond pait tleven: in the former cafe, the clock is 5 mi nutes 52 feconds before the Sun; and in the later cafe, the Sun is 3 minutes 59 leconds fafter than the clock. But without a Meridian Line, or a Tranfit Inftrument fixed in the plane of the Meridian, we cannot fet a Sun-dial true.

How to draw a Me ridian Line.
226. The eafieft and moft expeditious way of drawing a Meridian Line is this: Make four or five concentric Circles, about a quarrer of an inch from one another, on a flat board about a foot in breadth; and let the outmof Circle be but litele lefs than the board will concain. Fix a pin perpendicularly in the center, and of fuch a length that its whole fhadow may fall within the innermoft Circle for at leaft four hours in the middle of the day. The pin oughe to be about an eighely part of an inch chick, and to have a round blunt puint. The board being fet exaetly level in a place where the Sun thines, luppofe from eight in the morning till four in the atternoon, about which hours the end of the fhadow fhould fall without
all the Circles; watch the times in the forenoon, when the extremity of the fhortening fhadow juft touches the feveral Circles, and there make marks. Then, in the afternoon of the fame day, watch the lengthening fhadow, and where its end touches the feveral Circles in going over them, make marks alfo. Laftly, with a pair of compaffes, find exactly the middle point between the two marks on any Circle, and draw a ftraight line from the center to that point; which Line will be covered at noon by the fhadow of a finall upright wire, which Thould be put in the place of the pin. The reafon for drawing feveral Circles is, that in cafe one part of the day hould prove clear, and the other part fomewhat cloudy, if you mifs the time when the point of the fhadow fhould touch one Circle, you may perhaps catch it in touching another. The beft time for drawing a Meridian Line in this manner is about the fummer folltice; becaufe the Sun changes his declination floweft and his altitude fafteft in the longeft days.

If the cafement of a window on which the Sun fhines at noon be quite upright, you may draw a line along the edge of its fhadow on the floor, when the fhadow of the pin is exactly on the Meridian Line of the board: and as the motion of the fhadow of the cafement will be much more fenfible on the floor than that of the fhadow of the pin on the board, you may know to a few feconds when it touches the Meridian Line on the floor; and fo regulate your clock for the day of obfervation by that line and the Equation Tables above mentioned, \(\S 225\).
\(22 \%\). As the equation of time, or difference between the time fhewn by a well-regulated Clock

Equation of natural days explained. and a true Sun-dial, depends upon two caufes, namely, the obliquity of the Ecliptic, and the unequal motion of the Earth in it, we fhall firft
explain the effects of thefe caufes feparately, and then the united effeets refulting from their combination.
228. The Farth's motion on its Axis being perfectly equable, or always at the fame rate, and the * plane of the Equator being perpendicular to its Axis, it is evident that in equal times equal portions of the Equator pafs over the Meridian; and fo would equal partions of the Eecliptic,

The firt part of the Equation of Time. if it were parallel to or coincident with the Equator. But, as the Ecliptic is oblique to the Equator, the equable motion of the Earth carries unequal portions of the E.cliptic over the Meridian in equal times, the difference being proportionate to the obliquity; and as fome parts of the Ecliptic are much more oblique than others, thofe differences are unequal among themfeives. Therefore if two Suns mould itart either from the beginning of Aries or Libra, and continue to move through equal arcs in equal times, one in the Equator, and the other in the Ecliptic, the equatoreal Sun would always return to the Meridian in 24 hours time, as meafured by a wellregulated clock; but the Sun in the Esliptic would return to the Meridian fometimes fooner, and fometimes later than the equatoreal Sun; and only at the fame moments wich him on four days of the year; namely, the 20th of Narch, when the Sun enters Aries; the 21 It of Fine, witen he enters Cancer; the 23 d of September, when he enters Libra; and the 2 at of December, when he enters Capricom. Bur, as there is only one Sun, and his apparent motion is always in the Ecliptic, Iet us henceforth call him the real Sun, and the other, which is fuppofed to move in the Equator,
* If the Earth were cut along the liquator, quite through the center, the fat furface of this fection would be the plane of the Equator; as the paper contained within any Circle may be jufly ictored the plane of that Ciscle.
the fictitious: to which laft, the motion of a wellregulared clock always anfwers.

Lee \(Z r z \bumpeq\) be the Earth, \(Z F R z\) its Axis, Fig. III. abcde, \&zc. the Equator, \(A B C D E\), \&cc. the northcm half of the Ecliptic from \(r\) to \(\bumpeq\) on the fide of the Globe next the eye, and \(M N O P, 8 c c\). the fouthern half' on the oppofice fide from \(\approx\) to \(r\). Let the points at \(\Lambda, B, C, D, E, F, \& c\). quite round from ir to \(r\) again, bound equal portions of the Ecliptic, gone through in equal times by the real Sun; and thofe at \(a, b, c, d, e, f, \& c\). equal portions of the Equator defcribed in equal times by the fictitious Sun; and let \(Z\) r \(z\) be the Meridian.

As the real Sun moves obliquely in the Fcliptic, and the fictitious Sun directly in the Equator, with refpect to the Meridian, a degree, or any number of degrees, between \(r\) and \(F\) on the Ecliptic, mult be nearer the Meridian \(Z r z\), than a degree, or any correfponding number of degrees on the Equator from \(r\) to \(f\); and the more fo, as they are the more oblique: and therefore the true Sun comes fooner to the meridian every day while he is in the quadrant \(r F\), than the fictitious Sun does in the quadrant \(r f\); for which reafon, the folar noon precedes noon by the clock, until the real Sun comes to \(F\), and the fictitious to \(f\), which two points, being equidiftant from the Meridian, both Suns will cume to it precifely at noon by the Clock.

While the real Sun defcribes the fecond quadrant of the Ecliptic FGHIKL from \(\sigma\) to \(\bumpeq\), he comes later to the Meridian every day than the fictitious Sun moving through the fecond quadrant of the Equator from \(f\) to \(\bumpeq\); for the points at \(G, H, I, K\), and \(L\) being farcher from the Meridian than their correfponding points at \(g, b, i, k\), and \(l\), they inuf be later in coming to it: and as both Suns come at the fame moment to the point \(\approx\), they come to the Meridian at the moment of noon by the Clock.

In departing from tibra, through the third quadrant, the real Sun going through \(M N O P Q\) toward is at \(R\), and the fictitious Sun through mnopq toward \(r\), the former comes to the Meridian every day fooner than the latter, until the real Sun comes to \(h e\), and the fictitious to \(r\), and then they both come to the Meridian at the fame time.

Laftly, as the real Sun moves equably through STUVW, from rs toward \(r\); and the ficticious Sun through stuvw, from \(r\) toward \(r\), the former comes later every day to the Meridian than the latter, until they both arrive at the point \(r\), and then they make it noon at the fame time with the clock.
229. The annexed Table fhews how much the Sun is fafter or flower than the clock ought to be, fo far as the difference depends upon the obliquity of the Ecliptic; of which the Signs of the firt and third quadrants are at the head of the

A Table of the Equavinnot lime dipending on the Sun's place in the Esfigtic. Table, and their Degrees at the left hand; and in there the Sun is fafter than the Clock: the Signs of the fecond and fourth quadrants are at the foot of the Table, and their degrees at the jight hand; in all which the Sun is nower than the Clock; fo that entering the Table with the given Sign of the Sun's place at the head of the Table, and the degree of his place in that Sign at the left hand; or with the given Sign at the foot of the Table, and Degree at the right hand; in the angle of meeting is the number of minutes and feconds that the Sun is fafter or nower than the clock; or in other words, the quantity of cime in which the real Sun, when in that part of the Ecliptic, comes fooner or later to the meridian than the fictitious Sun in the Equator. Thus, when the Sun's place is y Taurus 12 degrees, he is 9 minutes 47 feconds fafter than the clock;
and when his Place is \(\sigma_{0}\) Cancer 18 degrees, he is 6 minutes 2 feconds flower.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Sun fatter than the Clock in} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\ddot{0} \\
0 \rightarrow 0 \\
\\
\stackrel{0}{8} .
\end{gathered}
\]} & \(\stackrel{r}{\sim}\) & \(\stackrel{\square}{\square}\) & II & \[
\begin{aligned}
& \text { Ift } Q \\
& 3^{\text {d }} \mathrm{Q}
\end{aligned}
\] \\
\hline & ' " & " & ' " & Deg. \\
\hline \(\bigcirc\) & \(\bigcirc\) & \(8 \quad 23\) & 845 & 30 \\
\hline I & - 20 & \(8 \quad 34\) & \(8 \quad 35\) & 29 \\
\hline 2 & - 40 & 843 & \(8 \quad 24\) & 28 \\
\hline 3 & 10 & 853 & \(8{ }^{8} 8\) & 27 \\
\hline 4 & 119 & 91 & 8 - & 26 \\
\hline 5 & \(1 \quad 39\) & \(9 \quad 9\) & \(7{ }^{7} 88\) & 25 \\
\hline 6 & 159 & \(9 \quad 17\) & \(\begin{array}{ll}7 & 34\end{array}\) & 24 \\
\hline 7 & 218 & 924 & \(7 \quad 20\) & 23 \\
\hline 8 & 237 & 930 & 76 & 22 \\
\hline 9 & \(2 \quad 56\) & 935 & \(6 \quad 50\) & 21 \\
\hline 10 & 315 & 940 & \(6 \quad 35\) & 20 \\
\hline 11 & \(3 \begin{array}{ll}3 & 34\end{array}\) & 944 & \(6 \quad 18\) & 19 \\
\hline 12 & \(\begin{array}{lll}3 & 52\end{array}\) & \(9 \quad 47\) & 6 & 18 \\
\hline 13 & 4 ll & 950 & 544 & 17 \\
\hline 14 & 428 & 952 & 5 & 16 \\
\hline 15 & \(44^{4} 46\) & 953 & 58 & 15 \\
\hline 16 & 53 & 954 & \(4 \quad 50\) & 14 \\
\hline 17 & 5 20 & 954 & 431 & 13 \\
\hline 18 & 5 & 953 & \(4 \quad 11\) & 12 \\
\hline 19 & 563 & 951 & \begin{tabular}{lll}
3 & 5 \\
\hline
\end{tabular} & 11 \\
\hline 20 & 6
6 09 & 949 & \(\begin{array}{ll}3 & 32\end{array}\) & 10 \\
\hline 21 & \(6 \quad 25\) & 946 & \(\begin{array}{ll}3 & 11\end{array}\) & 9 \\
\hline 22 & 6 6, 40 & \(9 \quad 42\) & \(2{ }^{1} 1\) & 8 \\
\hline 23 & \(6 \quad 54\) & \(9 \quad 37\) & 230 & 7 \\
\hline 24 & \(7 \begin{array}{lr}7 & 9\end{array}\) & 932 & 29 & 6 \\
\hline 25
26 & \(\begin{array}{ll}7 & 22 \\ 7 & 36\end{array}\) & \(9 \quad 26\) & \(1{ }^{1} 48\) & 5 \\
\hline 26 & 7
7 36 & \(9 \quad 19\) & 126 & 4 \\
\hline 27
28 & \(\begin{array}{ll}7 & 48 \\ 8 & 0\end{array}\) & \(9 \quad 12\) & 15 & 3 \\
\hline 28
29 & 88 & 94 & - 43 & 2 \\
\hline 29
30 & \(\begin{array}{ll}8 & 12 \\ 8 & 23\end{array}\) & 8 & - 22 & 1 \\
\hline & & & & \\
\hline \[
\begin{gathered}
2 d \mathrm{Q} \\
4 \text { th } \mathrm{Q}
\end{gathered}
\] & m

4 & ת & \[
\begin{aligned}
& \frac{s x}{n} \\
& 49
\end{aligned}
\] & Deg. \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{Sun flower than the Clock in} \\
\hline
\end{tabular}

This Table is formed by taking the difference between the Sun's longitude and its right alcenfron, and turning it into rime.

\author{
230. This
}
plate 230. This part of the Equation of time may
III.

Fig. III, perhaps be fomewhat difficult to underftand by a Figure, becaufe both halves of the Eclipric feem to be on the fame fide of the Globe: but it may be made very ealy to any perfon who has a real Globe before him, by putting fmall patches on every terth or fifteenth degree both of the Lquator and Ecliptic, beginning at Aries \(r\); and then, turning the ball nowly round wett ward, he will lee all the patches from Aries to Cancer come to the brazen Meridian fooner than the correfponding patches on the Equator; all thofe from Cancer to Libra will come later to the Meridian than their correfponding patches on the Equator; thofe from Libra to Capricorn fooner, and thofe from Capricorn to Aries later; and the patches at the beginnings of Aries, Cancer, Libra, and Capricorn, being either on or even with thofe on the Equator, fhew that the two Suns either meet there, or are even with one another, and fo come to the Meridian at the fame moment.

A machine for thewing the fy tereal, the equal, and tioe tolar Time.
231. Let us fuppofe that there are two little balls moving equably round a celeftial Globe by clock-work, one always keeping in the Ecliptic, and gile with gold, to reprefent the real Sun; and the other keeping in the Equator, and filvered, to reprefent the fictitious Sun: and that while thefe balls move once round the Globe according to the order of Signs, the Clock turns the Globe 366 rimes round its Axis weftward The Stars will make 366 diurnal revolutions from the brazen Meridian to it again; and the two balls reprefenting the real and fictitious Suns always going farther eaftward from any given Star, will come later than it to the Meridian every following day: and each ball will make \(3^{6} 5\) revolutions to the Meridian; coming equally to it at the beginnings of Aries, Cancer, 1 ibra, and Capricorn; but in every other poiut of the Ecliptic, the gilt ball will come either fooner or laftr to the Meridian
than the filvered ball, like the patches abovementioned. This would be a pretty way enough of thewing the reafon why any given Star, which on a certain day of the year, comes to the Meridian with the Sun, paffes over it fo much fooner every following day, as on that day twelvemonth to come to the Meridian with the Sun again; and alfo to hew the reafon why the real Sun comes to the Meridian fometimes fooner, and fometimeslater, than the time when it is noon by the clock; and, on four days of the year, at the fame time; while the fictitious Sun always comes to the Meridian when it is twelve at noon by the clock. This would be no difficult talk for an artift to perform; for the gold ball might be carried round the Ecliptic by a wire from its north Pole, and the filver ball round the Equator by a wire from its fouth Pole, by means of a few wheels to each; which might be eafly added to my improvement of the celeftial Globe, defcribed in \(\mathrm{N}^{\mathrm{o}} 483\) of the Pbilofopbical Tranfacions; and of which I thall give a deferipcion in the latter part of this Book, from the third Firgure of the rhird Plate.
232. It is plain that if the Ecliptic were more Fig. Jw, obliquely pofited to the Equator, as the dotted Circle \(r \times \Omega\), the equal divifions from \(r\) to \(x\) would come ftill fooner to the Meridian \(Z 0\) r than thofe marked \(A, B, C, D\), and \(E\) do: for two divifions containing 30 degrees, from or to the fecond dot, a little fhort of the figure \(I\), come fooner to the Meridian than one divifion containing only 15 degrees from \(r\) to \(A\) does, as the Ecliptic now ftands; and thofe of the fecond quadrant from \(x\) to \(\bumpeq\) would be fo much later. The third quadrant "ould be as the firf, and the fourth as the fecond. And it is likewife plain, that where the Ecliptic is molt oblique, namely, about Aries and Libra, the difference wrould be greateft; and leaft about Cancer and Capricorn, where the abliquity is leat.
234. Having explained one caufe of the difference of time fhewn by a well-regulated Clock and a true Sun-dial, and confidered the Sun, not the Earth, as moving in the Ecliptic, we ncav proceed to explain the other caufe of this difference, namely, the inequality of the Sun's apparent motion, \(\S 205\), which is floweft in fumnier, when the Sun is farsheff from the Earth, and fwifteft in winter when he is neareft to it. But the Earth's motion on its Axis is equable all the year round, and is performed from weft to eaft; which is the way that the Sun appears to change his place in the Ecliptic.
235. If the Sun's morion were equable in the Ecliptic, the whole difference between the equal time as fhewn by the Clock, and the unequal time as thewn by the Sun, would arife from the obliquity of the Ecliptic. But the Sun's motion fometimes exceeds a degree in 24 hours, though generally it is lefs; and when his motion is Aoweft, any particular Meridian will revolve fooner to him than when his motion is quickeft; for it will overtake him in lefs time when he advances a lefs face than when he moves through a larger.
236. Now, if there were two Suns moving in the plane of the Ecliptic, fo as to go round it in a year; the one defcribing an equal arc every 24 hours, and the other defcribing fometimes a lefs are in 24 hours, and at other times a larger; gaining at one time of the year what it loft at the oppofite; it is evident that either of thefe Suns would come fooner or later to the Meridian than the other, as it happened to be behind or before the other: and when they were both in conjunction, they would come to the meridian at the fame moment.
237. As the real Sum moves unequably in the Ecliptic, let us fuppofe a fictitious Sun to move equably in a circle coincident with the plane of

Fig. iv. the Ecliptic. Let \(\wedge B C D\) be the Ecliptic or Orbir
in which the real Sun moves, and the dotted Circle \(a b c d\) the imaginary Orbit of the fictitious Sun; each going round in a year according to the order of letters, or from weft to eaft. Let \(H I K L\) be the Earth turning round its Axis the fame way every 24 hours; and fuppofe both Suns to ftart from \(A\) and \(a\), in a right line with the plane of the Méridian \(E H\), at the fame moment : the real Sun at \(A\), being then at his greateft diftance from the Earth, at which time his motion is floweft ; and the fictitious Sun at \(a\), whofe motion is always equable, becaufe his diftance from the Earth is fuppofed to be always the fame. In the time that the Meridian revolves from \(H\) to \(H\) again, according to the order of the letters HIKL, the real Sun has moved from \(A\) to \(F\); and the fictitious with a quicker motion from \(a\) to \(f\), through a larger arc ; therefore, the Meridian \(E H\) will revolve fooner from \(H\) to \(b\) under the real Sun at \(F\), than from \(H\) to \(k\) under the fictitious Sun at \(f\); and confequently it will then be noon by the Sun-dial fooner than by the Clock.

As the real Sun moves from \(A\) toward \(C\), the fwiftnefs of his motion increafes all the way to \(C_{2}\) where it is at the quickeft. But notwithftanding this, the fictitious Sun gains fo much upon the real foon after his departing from \(A\), that the increafing velocity of the real Sun does not bring him up with the equally moving fictitious Sun till the former comes to \(C\), and the latter to \(c\), when each has gone half round its refpective Orbit; and then being in conjunction, the Meridian \(E H\) revolving to \(E K\) comes to borh Suns at the fame time, and therefore it is noon by them both at the fame moment.

But the increafed velocity of the real Sun, now being at the quickeft, carries him before the fictitious one; and, therefore, the fame Meridian will come to the fictitious Sun fooner than to the real; for while the fictitious Sun moves from \(c\) to \(g\),
plate the real Sun moves through a greater arc from \(C\) to \(G\) : confequently the point \(K\) has its noon by the Clock when it comes to \(k\), but not its noon by the Sun till it comes to \(l\). And although the velocity of the real Sun diminifhes all the way from \(C\) to \(A\), and the fictitious Sun by an equable motion is fill coming nearer to the real Sun, yet they are not in conjunction till the one comes to \(A\), and the other to \(a\); and then it is noon by them both at the fame moment.

Thus it appears, that the folar noon is always later than noon by the clock while the Sun goes from \(C\) to \(A\), fooner while he goes from \(A\) to \(C\), and at thefe two points the Sun and Clock being equal, it is noon by them both at the fame moment.

Apogee, Perigee, and \(A\) pfides, what.

Fig. IV.
238. The point \(A\) is called the Sun's Apogee, becaule when he is there, he is at his greatelt diftance from the Earth ; the point \(C\) his Perigee, becaufe when in it he is at his leaft diftance from through the Earth's center, from one of thefe points to the other, is called the line of the Ap \(\sqrt{\text { dides. }}\)
239. The diftance that the Sun has gone in any time from his Apogee (not the diftance he has to go to it, though ever fo little) is called bis Mein Ano. mean Anomaly, and is reckoned in Signs and Demaly, what, grees, allowing 30 Degrees to a Sign. Thus, . when the Sun has gone 174 Degrees from his A pogee at \(A\), he is faid to be 5 Signs 24 Degrees from it, which is his mean Anomaly; and when he is gone 355 Degrees from his Apogee, he is faid to be II Signs 25 Degrees from it, although he be but 5 Degrees fhort of \(A\) in coming round to it again.
240. From what was faid above, it appears, that when the Sun's Anomaly is lefs than 6 Signs, that is, when he is any where between \(A\) and \(C\), in the half \(A B C\) of its Orbit, the folar noon pre-
cedes the clock noon; but wher his Anomaly is more than 6 Signs, that is, when he is any where between \(C\) and \(A\), in the half \(C D A\) of his Orbit, the clock noon precedes the folar. When his Anomaly is o Signs, o Degrees, that is, when he is in his Apogee at \(A\); or 6 Signs o Degrees, which is when he is in his Perigee at \(C\); he comes to the Meridian at the moment that the fictitious Sùn does, and then it is noon by them both at the fame inftant.
241. The following Table fhews the Variation, or Equation of time depending on the Sun's Anomaly, and arifing from his unequal motion in the Ecliptic; as the former Table, \(\S 229\), Thews the Variation depending on the Sun's place, and refulting from the obliquity of the Ecliptic: this is to be underftood the fame way as the other, namely, that when the Signs are at the head of the Table, the Degrees are at the left hand; but when the Signs are at the foot of the Table, the refpective Degrees are at the right hand; and in both cafes the Equation is in the Angle of meet ing. When both the above-mentioned Equations are cither fafter or nower, their fum is the abfolute Equation of Time; but when the one is fafter, and the orher nower, it is their difference. Thus, fuppofe the Equation depending on the Sun's place be 6 minutes 41 feconds too flow, and the Equation depending on the Sun's Anomaly be 4 minutes 20 feconds too flow, their fum is eleven minutes one fecond too now. But if the one had been 6 minutes 41 feconds too faft, and the other 4 minutes 20 feconds too flow, their difference would have been 2 minutes 2 I feconds too faft, becaufe the greater quantity is too falt.

Of the Equation of Time.

A Tahle of the Equa. tion of Time, deperiding on the Sun's Anomaly.

This Table is formed by turning the Equation of the Sun's Center (fee p.316) into time.
242. The obliquity of the Ecliptic to the Equator, which is the first mentioned caufe of the Equation of Time, would make the Sun and Clocks agree on four days of the year; which are, when the Sun enters Aries, Cancer, JLibra, and Capricorn: but the other caule, now explained,
would make the Sun and Clocks equal only twice in a year; that is, when the Sun is in his Apogee and Perigee. Confequently, when thefe two points fall in the beginnings of Cancer and Capricorn, or of Aries and Libra, they concur in making the Sun and Clocks equal in thefe points. But the Apogee at prefent is in the gth degree of Cancer, and the Perigee in the 9th degree of Capricorn; and therefore the Sun and Clocks cannot be equal about the beginnings of thefe Signs, nor at any time of the year, except when the fwiftnefs or nownefs of the Equation refulting from one caufe jult balances the flownefs or fwiftnefs arifing from the other.
243. The fecond Table in the following Chapter fhews the Sun's place in the Ecliptic at the noon of every day by the Clock, for the fecond year after Leap-year; and alfo the Sun's Anomaly to the neareft degree, neglecting the odd minutes of that degree. Its ufe is only to affift in the method of making a general Equation Table from the two fore-mentioned Tables of Equation depending on the Sun's Place and Anomaly, \(\$ 229\), 24I; concerning which method we fhall give a few examples prefently. The next Tables which follow them are made from thofe two; and fhew the abfolute Equation of Time refulting from the combination of both its caufes; in which the minutes as well as degrees, both of the Sun's Place and Anomaly, are confidered. The ufe of there Tables is already explained, \(\oint 225\) : and they ferve for every day in Leap-year, and the firt, fecond, and third years after: For on moft of the fame days of all thefe years the Equation differs, becaufe of the odd fix hours more than the 365 days of which the year confifts.

Example I. On the ruth of April, the Sun is Examples in the 25 th degree of \(r\) Aries, and his Anomaly \begin{tabular}{c}
formaking \\
Equation \\
\hline
\end{tabular} is 9 Signs 15 degrees; the Equation refulting \(\begin{gathered}\text { Equation } \\ \text { Tables }\end{gathered}\)
from the former is 7 minutes 22 feconds of time too faft, \(\$ 229\); and from the latter, 7 minutes 24 feconds too now, §241; the difference is 2 feconds that the Sun is too llow at the noon of that day, taking it in grofs for the degrees of the Sun's Place and Anomaly, without making proportionable allowance for the odd minutes. Hence, at noon, the fwiftnefs of the one Equation balancing fo nearly the flownefs of the other, makes the Sun and Clocks equal on fome part of that day.

Example II. On the r6th of Fune, the Sun is in the \(25^{\text {th }}\) degree of II Gemini, and his Anomaly is 11 Signs 16 Degrees; the Equation arifing from the former is i minute 48 feconds too faft; and from the latter I minute 50 feconds too flow; which balancing one another at noon to 2 feconds, the Sun and Clocks are again equal on that day.

Example III. On the 3 Ift of Auguft, the Sun's place is 8 degrees II minutes of \({ }^{2} \mathrm{Virgo}\) (which we call the 8th degree, as it is fo near), and his Anomaly is \(1 \operatorname{Sign} 29\) Degrees; the Equation arifing from the former is 6 minutes 40 feconds too flow; and from the latter 6 minutes 32 feconds too faft; the difference being only 8 feconds too fow at noon, and decreafing toward an equality, will make the Sun and Clocks equal in the evening of that day.

Example IV. On the 23d of December, the Sun's place is 1 degree \(5^{8}\) minutes (call it 2 degrees) of कs Capricorn, and his Anomaly is 5 Signs 23 Degrees; the Equation for the former is 43 feconds too llow, and for the latter 53 feconds too fift; the difference is 15 feconds too falt at noon; which decreafing will come to an equality, and fo make the Sun and Clocks equal in the evening of that day.

And thus we find, that on fome part of each of the above-mentioned fourdays, the Sun and Clocks are equal; but if we work examples for all other days of the year, we fhall find them different. And,
244. On thole days which are equidiftant from any Equinox or Solftice, we do not find that the Equation is as much too faft or too llow on the one fide, as it is too flow or too faft on the other. The reafon is, that the line of the Apfides, \(\$ 238\), Remark. does not, at prefent, fall either into the Equinoctial or Solftitial points, § 242 .
245. The four following Equation Tables, for Leap-year, and the firft, fecond, and third years after, would ferve for ever, if the Sun's Place and A nomaly were always the fame on every given day

The Reafon why Equation Tables are but tem. porary. of the year as on the fame day four years before or after. But fince that is not the cafe, no general Equation Tables can be fo conftructed as to be perpetual.

\section*{C H A P. XIV.}

\section*{Of the Preceffion of the Equinoxes.}
246. T has been already obferved, § 116 , that by the Earth's motion on its Axis, there is more matter accumulated all around the equatorial parts than any where elfe on the Earth.

The Sun and Moon, by attracting this redundancy of matter, bring the Equator fooner under them in every return towards it, than if there was no fuch accumulation. Therefore, if the Sun fets out, from any Star, or other fixed point in the Heavens, the moment when he is departing from the Equinoctial or from either Tropic, he will come to the fame Equinox or Tropic again \(20 \mathrm{~min}, 17 \frac{x}{2}\) fec. of time, or 50 feconds of a degree, before he completes his courfe, fo as to arrive at the fame fixed Star or Point from whence he fet out. For

PLATE V1.
the Equinoctial points recede 50 feconds of a degree weftward every year, contrary to the Sun's annual progreffive motion.

When the Sun arrives at the fame * Equinoctial or Solftitial point, he finimes what we call the Tropical Year; which, by obfervation, is found to contain 365 days 5 hours 48 minutes 57 feconds: and when he arrives at the fame fixed Star again, as feen from the Earth, he completes the Sydereal Year, which contains 365 days 6 hours 9 minutes \(14 \frac{1}{2}\) feconds. The Sydereal Year is therefore 20 minutes \(17 \frac{1}{2}\) feconds longer than the Solar or Tropical Year, and 9 minutes \(14 \frac{1}{2}\) feconds longer than the Julian or Civil year, which we ftate at 365 days 6 hours: fo that the Civil year is almoft a mean betwixt the Sydereal and Tropical.
247. As the Sun defcribes the whole Ecliptic, or 360 degrees, in a Tropical year, he moves \(59^{\prime} 8^{\prime \prime}\) of a degree every day at a mean rate: and confequently \(50^{\prime \prime}\) of a degree in 20 minutes \(17 \frac{1}{2}\) feconds of time: therefore he will arrive at the fame Equinox or Solltice when he is \(50^{\prime \prime}\) of a degree fhort of the fame Star or fixed point in the Heavens from which he fet out in the year before. So that with refpect to the fixed Stars, theSun and Equinoctial points fall back (as it were) 30 degrees in 2160 years, which will make the Stars appear to have gone 30 deg. forward, with refpect to the Signs of the Ecliptic in that time: for the fame Signs always keep in the fame points of the Ecliptic, without regard to the Conftellations.
Fig. IV. To explain this by a Figure, let the Sun be in Conjunction with a fixed Star at \(S\), fuppofe in the 30 th degree of 8 , on the 2 Ift day of May 1756. Then making 2160 revolutions through the Eclip-
* The two oppofite points in which the Ecliptic croffes the Equinoctial, are called the Equinoctial points: and the twa points where the Ecliptic touches the Tropics (which are likewife oppofite, and go degrees from the former) are called rbe Solfitial points.

A TABLE fhewing the Preceffion of the Equinoctial Points in the Heavens, both in Motion and Time; and the Anticipation of the Equinoxes on the Earth.

tic VWX, at the end of fo many Sydereal years, he will be found again at \(S\) : but at the end of fo many Julian years, he will be found at \(M\), fhort of \(S\), and at the end of fo many Tropical years, he will be found fhort of \(M\), in the 30 th deg. of Taurus at \(T\), which has receded back from \(S\) to \(T\) in that time, by the preceffion of the Equinoctial points \(r\) Aries and \(\Omega\) Libra. The Arc ST. will be equal to the amount of the preceffion of the Equinox in 2160 years at the rate of \(50^{\prime \prime}\) of a degree, or \(20 \mathrm{~min} .17 \frac{1}{2}\) fec. of time annually: this, in fo many years, makes 30 days \(10 \frac{1}{2}\) hours: which is the difference between 2160 Sydereal and Tropical years. And the Arc \(M T\) will be equal to the fpace moved through by the Sun in 2160 times 11 min . 3 fec. or 16 days 13 hours 48 minutes, which is the difference between 2160 Julian and Tropical years.
248. From the fhifting of the Equinoctial points, and with them all the Signs of the Ecliptic, it fullows that thofe Stars which in the infancy of Aftro. nomy were in Aries are now got into Taurus; thofe of Taurus into Gemini, \&cc. Hence likewife it is, that the Stars which rofe or fet at any particular feafon of the year, in the times of Hesiod, Eudoxus, Virgil, Pliny, \&cc. by no means anfwer at this time to their defcriptions. The preceding Table fhews the quantity of this Thifting both in the Heavens and on the Earth, for any number of years to 25,920 ; which completes the grand celeftial period: within which any number and its quantity is eafily found, as in the following example, for 5763 years; which at the Autumnal Equinox, A. D. 1756 , is thought to be the age of the world. So that with regard to the fixed Stars, the Equinoctial points in the Heavens, have receded \(2^{3} 20^{\circ} 2^{\prime} 30^{\prime \prime \prime}\) fince the creation; which is as much as the Sun moves in \(81^{4} 5^{\mathrm{h}} 0^{\mathrm{m}} 52^{5}\). And fince that time, or in 5763 jears, the Equinoxes with
us have fallen back \(44^{\mathrm{d}} 5^{\mathrm{h}} 2 I^{\mathrm{m}} 9^{3}\); hence, reckoning from the time of the Fulian Equinox, A. D. 1756, viz. Sept. It th, it appears that the Autumnal Equinox at the creation was on the 25 th of Oitober.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
Julian \\
years.
\end{tabular}} & \multicolumn{8}{|l|}{एreceffion of the Equinoctial Points in the Heavens.} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Anticipation of the Equinoxes on the Earth.}} \\
\hline & \multicolumn{4}{|c|}{Motion.} & \multicolumn{4}{|c|}{Time.} & & & & & \\
\hline & s & 0 & & & & & & & D & & & & S. \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{r}
5000 \\
700 \\
6 c \\
3
\end{array}
\]} & \multicolumn{4}{|l|}{\multirow[t]{4}{*}{\(\begin{array}{cccr}2 & 9 & 26 & 40 \\ 0 & 9 & 43 & 20 \\ 0 & 0 & 50 & 0 \\ 0 & 0 & 2 & 30\end{array}\)}} & , & 10 & 58 & & 38 & & & 50 & \\
\hline & & & & & 9 & 20 & 44 & & & & & 55 & \\
\hline & & & & & - & & & & 0 & & & 3 & \\
\hline & & & & & - & & & & & & & 3 & \\
\hline 5763 & 2 & 20 & 2 & & & 5 & - & 52 & 44 & & & 21 & \\
\hline
\end{tabular}
249. The anticipation of the Equinoxes, and confequently of the Seafons, is by no means owing to the preceffion of the Equinoctial and Solftitial

The Anticipation of the Equinoxes and Seafons. points in the Heavens (which can only affect the apparent motions, places, and declinations of the fixed Stars), but to the differencebetween the Civil and Solar year, which is II minutes 3 feconds; the Civil year containing 365 days 6 hours, and the Solar year 365 days 5 hours 48 minutes 57 feconds. The next following Table, page 159 , thews the, length, and confequently the difference of any number of Sydereal, Civil, and Solar years from I to \(10,000\).
250. The above II minutes 3 feconds, by which the Civil or Julian year exceeds the Solar, amounts

The reafon for altering the Sisle. to II days in 1433 years: and fo much our feafons have fallen back with refpect to the days of the months, fince the time of the Nicene Council in A. D. 325 , and therefore, in order to bring back all the Fiafts and Feftivals to the days then fettled,

PI.ATE VI.
it was requifite to fupprefs 11 nominal days. And that the fame feafons might be kept to the fame times of the year for the future, to leave out the Biffextile day in February at the end of every century of years where the fignificant figures are not divifible by 4 ; reckoning them only common years, as the \(17 \mathrm{th}, 18\) th, and 19 th centuries, viz. the years \(1700,1800,1900,88 c\). becaufe a day intercalated every fourth year was too much, and retaining the Biffextile-day at the end of thofeCenturies of years which are divifible by 4 , as the 16 th , 20 th, and 24 th, Centuries; viz. the years 1600 , \(2000,2400, \& c\). Otherwife, in length of time, the feafons would be quite reverfed with regard to the months of the year; though it would have required near 23,783 years to have brought about fuch a total change. If the Earth had made exactly \(365^{\frac{5}{4}}\) diurnal rotations on its Axis, while it revolved from any Equinoctial or Solftitial point to the fame again, the Civil and Solar years would always have kept pace together, and the Style would never have required any alteration.

The Preceffinn of the Fqu noctial punts.

Fig. KI.
251. Having already mentioned the caufe of the Preceffion of the Equinoctial points in the Heavens, § 246, which occafions a now deviation of the Earth's axis from its parallelifm, and thereby a change of the declination of the Stars from the Equator, together with a how apparent motion of the Stars forward with refpect to the Signs of the Ecliptic, we fhall now explain the Phenomena by a Diagram.

Let NZSVL be the Earth, SONA its Axis produced to the ftarry Heavens, and terminating in \(A\), the prefent north Pole of the Heavens, which is vertical to \(N\) the north Pole of the Earth. Let EOQ be the Equator, \(\tau\) Ts \(Z\) the Tropic of Cancer, and \(V \tau\) is the Tropic of Capricorn: \(V O Z\) the Ecliptic, and \(B O\) its Axis, both which are immove-
able among the Stars. But, as * the Equinoctial points recede in the Ecliptic, the Earth's Axis \(S O N\) is in motion upon the Earth's center O, in fuch a manner, as to defcribe the double Cone \(N O n\) and \(S O s\), round the Axis of the Ecliptic BO, in the time that the Equinoctial points move quite round the Ecliptic, which is 25,920 years; and in that length of time the north Pole of the Earth's Axis produced, deferibes the Circle \(A B C D A\) in the ftarry Heavens, round the Pole of the Ecliptic, which keeps immoveable in the center of that Circle. The Earth's Axis being \(23 \frac{\pi}{2}\) degrees inclined to the Axis of the Ecliptic, the Circle \(A B C D A\), defcribed by the north Pole of the Earth's Axis produced to \(A\), is 47 degrees in diameter, or double the inclination of the Earth's Axis. In confequence of this motion, the point \(A\), which at prefent is the north Pole of the Heavens, and near to a ftar of the fecond magnitude in the tail of the conftellation called the Littic Bear, mult be deferted by the Earth's Axis; which moving backward a degree every 72 years, will be directed toward the Star or poini \(B\) in 6480 years from this time: and in twice that time, or 12,960 years, it will be directed toward the Star or Point \(C\); which will then be the north Pole of the Heavens, although it is at prefent \(8_{\frac{1}{2}}^{\frac{1}{2}}\) degrees fouth of the Zenith of London \(L\). The prefent pofition of the Equator \(E O \mathscr{Q}\), will then be changed into \(\mathrm{e} O q\), the Tropic of \(C\) ancer \(\tau_{\Phi} Z\) into \(V t \Phi\), and the Tropic of Capricorn \(V T\) vs into \(t\) is \(Z\); as is evident by the Figure; and the Sun, when in that part of the Heavens where he is now over the

\footnotetext{
* The Equinoctial Circle interfects the Ecliptic in two oppofite points; namely, the frot points of the figns Arics and Libra: They are called the Equinoctial Porints, becaufe when the Sun is in either of them, he is direcily over the terreftrial Equator; and then the days and nights ate
equal.
}
earthly Tropic of Capricorn, and makes the fhorteft days and longeft nights in the Northern Hemifphere, will then be over the earthly Tropic of Cancer, and make the days longeft and nights fhorteft. And it will require 12,960 years more, or 25,920 from the prefent time, to bring the north Pole \(N\) quite round, fo as to be directed toward that point of the Heavens which is vertical to it at prefent. And then, and not till then, the fame Stars, which at prefent defcribe the Equator, Tropics, and Polar Circles, \&cc. by the Earth's diurnal motion, will defcribe them over again.

A TABLE

A TABLE fhewing the Time contained in any number of Sydereal, Julian, and Solar Years, from 1 to 10000.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Sydereal Years.} & \multicolumn{2}{|l|}{- Julian Years.} & \multicolumn{4}{|l|}{Solar Years.} \\
\hline Years. & Days. & H. & M & S. & Days. & H . & Days. & H. & / M. & S. \\
\hline 1 & 365 & 6 & 9 & \(14 \frac{1}{2}\) & 365 & 6 & 365 & 5 & 48 & \\
\hline 2 & 730 & 12 & 18 & 29 & 730 & 12 & 730 & 11 & 37 & \\
\hline 3 & 1095 & 18 & 27 & \(43 \frac{1}{2}\) & 1055 & 18 & 1095 & 17 & 26 & 54
51 \\
\hline 4 & 1401 & 0 & 36 & \(5^{8}\) & 1461 & 0 & 1460 & 23 & 15 & 48 \\
\hline 5 & 1826 & 6 & 46 & \(12 \frac{1}{2}\) & & 6 & 1826 & 5 & 4 & 45 \\
\hline 6 & 2191 & 12 & 55 & 27 & 2191 & & 2191 & 10 & & \\
\hline 8 & 2556 & 19 & 5 & \(41^{\frac{1}{2}}\) & 2556 & 18 & 2556 & ! 6 & 53
42 & 42
39 \\
\hline 8 & 2922 & 1 & 13 & 56 & 2922 & 0 & 2921 & 22 & 42
31 & 39
36 \\
\hline 9 & 3287 & 7 & 23 & \(10 \frac{1}{2}\) & 3287 & 6 & 3287 & 4 & 20 & 33 \\
\hline 10 & 3652 & 13 & 32 & 25 & 3652 & 12 & & 10 & 9 & 30 \\
\hline 20 & 7305 & 6 & 4 & 50 & 7305 & 0 & 7304 & 20 & 19 & 0 \\
\hline 30 & 10957 & 16 & 37 & 15 & 10957 & 12 & 10957 & 6 & 28 & 30 \\
\hline 40 & 1461 c & 6 & 9 & 40 & 14610 & 0 & 14609 & 16 & 38 & 0 \\
\hline 50 & 18262 & 19 & 42 & 5 & 18262 & 12 & 18262 & 2 & 47 & 0 \\
\hline & 21915 & 9 & 14 & 30 & 21915 & 6 & 21914 & 12 & 47
57 & 0 \\
\hline 70 & 25567 & 22 & 46 & 55 & 25567 & 12 & & & & \\
\hline 80 & 29220 & 12 & 19 & 20 & 29220 & 0 & 29219 & & 6
16 & 30 \\
\hline 90 & 32873 & 1 & 51 & 45 & 32872 & 12 & 32871 & 9
19 & 16 & 0 \\
\hline 1 co & 36525 & 15 & 24 & 10 & 36525 & & 36524 & 19
5 & 25 & 30 \\
\hline 200 & 73051 & 6 & 48 & 20 & 7305 c & & 73048 & 11 & 35
10 & \\
\hline 300 & 109576 & 22 & 12 & 30 & 109575 & & & & & \\
\hline 400 & 146102 & 13 & 36 & 40 & 146100 & & & & 45 & \\
\hline 500 & 182628 & 5 & 0 & 50 & 182625 & & 140096 & 22 & 20 & \\
\hline 600 & 219153 & 20 & 25 & 5 & 21915 c & & 182621
219145 & 3 & 55 & \\
\hline 700 & 255679 & 11 & 49 & 10 & \[
255675
\] & & \[
\begin{aligned}
& 219145 \\
& 255669
\end{aligned}
\] & 9
15 & 30 & \\
\hline 800 & & & & & & & & & 5 & \\
\hline 900 & & \(\begin{array}{r}3 \\ 18 \\ \hline\end{array}\) & 13 & 20 & 292200 & & 292193 & 20 & 40 & \\
\hline 1000 & 365256 & 10 & 37 & 30 & 328725 & & 328718 & 2 & 15 & \\
\hline 2000 & 730512 & 20 & 3 & 40
20 & 305250 & & 365242 & 7 & 50 & \\
\hline 3000 & 1095769 & 6 & & & 730500 & & 730484 & 15 & 40 & \\
\hline & & & & & 109575 & & 1095726 & 23 & 30 & \\
\hline 4000 & & 16 & 6 & 40 & & & & & & \\
\hline 5000 & \[
1826282
\] & 2 & 8 & 20 & \[
182625 \mathrm{c}
\] & & 1460969 & 7 & 20 & \\
\hline 6000 & \[
2191538
\] & 12 & 10 & & \[
\begin{aligned}
& 102025 c \\
& 2191500
\end{aligned}
\] & & 1826211 & 15 & 10 & \\
\hline 7000 & 2555794 & 22 & 11 & & \[
\begin{aligned}
& 2191500 \\
& 2556750
\end{aligned}
\] & & 2191453 & 23 & \(\bigcirc\) & \\
\hline 8000 & 2952051 & 8 & 13 & 20 & \[
\begin{aligned}
& 2550750 \\
& 2922000
\end{aligned}
\] & & 2550696 & 6 & 50 & \\
\hline & & & & & & & 2921938 & 14 & . 40 & \\
\hline 9000 & 3287037 & 18 & 15 & & & & & & & \\
\hline 10000 & 3652564 & 4 & 16 & & \[
\begin{aligned}
& 3287250 \\
& 3652500
\end{aligned}
\] & & \[
3287180
\] & 22 & & \\
\hline & & & & 40 & & & \[
3652423
\] & 6 & 20 & \\
\hline
\end{tabular}

Table of the Sun's
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{A TABLE fhewing the Sun's true Place, and Dittance from its Apogee, for the fecond Year after Leap-year.} \\
\hline & \multicolumn{2}{|l|}{January.} & \multicolumn{2}{|l|}{February.} & \multicolumn{2}{|l|}{March.} & \multicolumn{2}{|l|}{April.} \\
\hline \[
\left[\begin{array}{l}
5 \\
\vdots \\
5
\end{array}\right.
\] & \[
\begin{aligned}
& \text { jun's } \\
& \text { Place }
\end{aligned}
\] & \begin{tabular}{l}
Sun's \\
Anom.
\end{tabular} & \begin{tabular}{l}
Sun's \\
Place
\end{tabular} & \begin{tabular}{l}
Sun's \\
Anom.
\end{tabular} & Sun's Place. & Sun's
Anom. & \begin{tabular}{l}
Sun's \\
Place.
\end{tabular} & Sun's Anom. \\
\hline & D. M & D. M. & D. M & . & D. M & D. M & D. M & D. M. \\
\hline \[
\begin{array}{l|l}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1 \\
5 & 1
\end{array}
\] & \[
\left|\begin{array}{ll}
112 & 123 \\
12 & 24 \\
13 & 25 \\
13 & 27 \\
14 & 28 \\
15 & 28
\end{array}\right|
\] & \[
\left|\begin{array}{ll}
6 & 2 \\
0 & 3 \\
6 & 4 \\
6 & 5 \\
6 & 6
\end{array}\right|
\] & \[
\left.\begin{array}{l|l|}
2 & 12 \\
3 & =5 \\
3 & 13 \\
4 & 57 \\
4 & 14 \\
5 & 58 \\
5 & 15 \\
6 & 58 \\
16 & 59
\end{array} \right\rvert\,
\] & \[
\begin{array}{ll}
1 & 3 \\
7 & 6 \\
7 & 7 \\
7 & 8
\end{array}
\] & & \[
\left|\begin{array}{ll}
8 & 2 \\
8 & 3 \\
8 & 4 \\
8 & 5 \\
8 & 6
\end{array}\right|
\] & \[
\left.\begin{array}{l|ll}
2 & 11 & r \\
3 & 5 \\
3 & 12 & 56 \\
1 & 13 & 55 \\
1 & 14 & 54 \\
5 & 15 & 53
\end{array} \right\rvert\,
\] & \[
\begin{aligned}
& 9 \\
& 9 \\
& 9 \\
& 9
\end{aligned}
\] \\
\hline \[
\begin{gathered}
6 \\
7 \\
8 \\
9 \\
9
\end{gathered}
\] & \[
\left|\begin{array}{ll}
16 & 29 \\
17 & 30 \\
18 & 31 \\
19 & 32 \\
20 & 34
\end{array}\right|
\] & \[
\begin{array}{ll}
0 & 10 \\
6 & 11
\end{array}
\] & \[
\left.\begin{array}{ll}
7 & 1 \\
8 & 19 \\
19 & 01 \\
9 & 20 \\
0 & 01 \\
0 & 21 \\
1 & 22 \\
1 & 03
\end{array} \right\rvert\,
\] & \[
\begin{array}{lr}
7 & 9 \\
7 & 10 \\
7 & 11 \\
7 & 12 \\
7 & 13
\end{array}
\] & \[
\left.\begin{array}{l|ll|}
9 & 16 & 10 \\
0 & 17 & 10 \\
1 & 18 & 10 \\
2 & 19 & 09 \\
3 & 20 & 09
\end{array} \right\rvert\,
\] & \(\begin{array}{rrr}8 & 8 \\ 8 & 8 \\ 8 & 9 \\ 8 & 11\end{array}\) & \(\left|\begin{array}{ll}16 & 52 \\ 17 & 51 \\ 18 & 49 \\ 19 & 48 \\ 20 & 47\end{array}\right|\) & \begin{tabular}{rr}
9 & 8 \\
9 & 8 \\
9 & 9 \\
9 & 10 \\
9 & 11
\end{tabular} \\
\hline \[
\begin{aligned}
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& 15
\end{aligned}
\] & \[
\left[\left.\begin{array}{ll}
21 & 35 \\
22 & 30 \\
23 & 37 \\
24 & 38 \\
25 & 39
\end{array} \right\rvert\,\right.
\] & & \[
\begin{array}{ll}
23 & 03 \\
2+ & 04 \\
25 & 04 \\
26 & 05 \\
27 & 06
\end{array}
\] & \begin{tabular}{ll}
7 & 14 \\
7 & 15 \\
7 & 16 \\
7 & 17 \\
7 & 18
\end{tabular} & \[
\begin{array}{ll}
4 & \mid 21 \\
5 & 09 \\
5 & 22 \\
6 \mid 23 & 09 \\
7 & 24 \\
7 & 08 \\
8 & 25
\end{array}
\] & \[
\begin{array}{ll}
8 & 12 \\
8 & 13 \\
8 & 14 \\
8 & 15 \\
8 & 16
\end{array}
\] & \[
\left.\begin{array}{l|l|}
2 & 21 \\
3 & 46 \\
3 & 42 \\
4 & 44 \\
4 & 23 \\
5 & 43 \\
6 & 24 \\
625 & 44
\end{array} \right\rvert\,
\] & \[
\begin{array}{ll}
9 & 12 \\
9 & 13 \\
9 & 14 \\
9 & 15 \\
9 & 16
\end{array}
\] \\
\hline & \[
\begin{cases}26 & 40 \\ 27 & 42 \\ 28 & 43 \\ 29 & 44 \\ \approx & 45\end{cases}
\] & & \[
\left|\begin{array}{ll}
28 & 06 \\
29 & 07 \\
2 x & 07 \\
1 & 07 \\
2 & 08
\end{array}\right|
\] & \[
\begin{array}{ll}
7 & 19 \\
7 & 20 \\
7 & 21 \\
7 & 22 \\
7 & 23
\end{array}
\] & \[
\left.\begin{array}{c|cc|}
9 & 26 & 08 \\
20 & 27 & 07 \\
21 & 28 & 07 \\
22 & 29 & 06 \\
23 & \gamma & 06
\end{array} \right\rvert\,
\] & \[
\begin{array}{ll}
8 & 17 \\
8 & 18 \\
8 & 19 \\
8 & 20 \\
8 & 21
\end{array}
\] & & \[
\begin{array}{ll}
9 & 17 \\
9 & 18 \\
9 & 19 \\
9 & 20 \\
9 & 21
\end{array}
\] \\
\hline & & \[
\begin{array}{l|ll}
6 & 6 & 22 \\
7 & 6 & 2 \\
\hline 8 & 6 & 2 \\
9 & 6 & 2 \\
0 & 6 & 2 \\
\hline
\end{array}
\] & & \[
\begin{array}{ll}
7 & 24 \\
7 & 25 \\
7 & 26 \\
7 & 27 \\
7 & 28
\end{array}
\] & & \[
\begin{array}{ll}
8 & 22 \\
8 & 23 \\
8 & 24 \\
8 & 25 \\
8 & 25
\end{array}
\] & \[
\begin{array}{ll}
1 & 32 \\
2 & 30 \\
3 & 28 \\
4 & 27 \\
5 & 25
\end{array}
\] & \[
\begin{array}{ll}
9 & 22 \\
9 & 23 \\
9 & 24 \\
9 & 25 \\
9 & 26
\end{array}
\] \\
\hline & & \[
\begin{array}{l|l}
1 & 6 \\
2 & 6 \\
3 & 7 \\
3 & 7 \\
4 & 7
\end{array}
\] & & \[
\begin{aligned}
& 7 \\
& 8
\end{aligned}
\] & & \[
\begin{array}{l|ll}
2 & 8 & 2 \\
1 & 8 & 2 \\
0 & 8 & 2 \\
0 & 9 & \\
9 & 9 &
\end{array}
\] & \[
\begin{array}{c|cc|}
\hline 7 & 6 & 23 \\
28 & 7 & 21 \\
29 & 8 & 26 \\
0 & 9 & 18 \\
1 & 10 & 16
\end{array}
\] & \[
\left.\begin{array}{c|cc}
3 & 9 & 27 \\
6 & 9 & 28 \\
6 & 9 & 29 \\
8 & 10 & 0 \\
6 & 10 & 1
\end{array} \right\rvert\,
\] \\
\hline & 15 & & & & 10 & 9 & & \\
\hline
\end{tabular}

A TABLE

\section*{TABLES}
OFTHE

\title{
EQUATION of TIME, \\ \[
F O R
\]
}

LEAP-YEARS AND COMMON YEARS;

Shewing what Time it ought to be by the CLOCK when the SUN's Center is on the Meridian.

Equation Tables.

A TAB.LE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The Bifextile, or Leap-Year.

Equation Tables.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.} \\
\hline \multicolumn{5}{|c|}{The Biffextile, or Leap-Year.} \\
\hline \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
\theta \\
0 \\
0 \\
0
\end{array}\right|
\]} & September. & Oftober. & November. & December. \\
\hline & M. S. & H. M. S. & H. M. S. & H. M. S. \\
\hline \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & \begin{tabular}{|cc|}
XI & 59 \\
59 & 30 \\
58 \\
58 & 52 \\
58 & 32 \\
58 & 12 \\
& \\
\hline
\end{tabular} & \[
\begin{array}{lrr}
\text { XI } & 49 & 22 \\
& 49 & 3 \\
48 & 45 \\
48 & 27 \\
& 48 & 9
\end{array}
\] & \begin{tabular}{lll}
XI & 43 & 45 \\
& 43 & 45 \\
& 43 & 45 \\
& 43 & 47 \\
& 43 & 49
\end{tabular} & \[
\begin{array}{rr}
49 & 43 \\
50 & 7 \\
50 & 31 \\
50 & 56 \\
51 & 21
\end{array}
\] \\
\hline \[
\begin{array}{r}
8 \\
9 \\
10
\end{array}
\] & \(\begin{array}{|cc|}\mathrm{XI} & 57 \\ 57 \\ 57 & 32 \\ 57 & 12 \\ 56 & 51 \\ 56 & 30\end{array}\) & XI \(\begin{gathered}47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 46 \\ 46 \\ 48 \\ 48\end{gathered}\) & \[
\begin{array}{rrr}
\text { XI } & 43 & 53 \\
& 43 & 57 \\
& 24 & 2 \\
44 & 8 \\
& 44 & 14
\end{array}
\] & \[
\begin{array}{lll}
\text { XI } & 51 & 47 \\
& 52 & 13 \\
& 52 & 40 \\
& 53 & 8 \\
& 53 & 35
\end{array}
\] \\
\hline \[
\left|\begin{array}{l}
12 \\
13 \\
14 \\
15
\end{array}\right|
\] & \begin{tabular}{lrr}
XI & 56 & 10 \\
55 & 49 \\
55 & 23 \\
55 & 7 \\
54 & 46
\end{tabular} & \[
\begin{array}{rrr}
\hline \text { XI } & 46 & 33 \\
& 46 & 19 \\
& 65 & 6 \\
& 45 & 52 \\
& 45 & 40
\end{array}
\] & \begin{tabular}{lll}
XI & 44 & 22 \\
& 44 & 30 \\
& 44 & 40 \\
& 44 & 50 \\
& 45 & 1
\end{tabular} & \[
\begin{array}{lll}
\text { XI } & 54 & 3 \\
& 54 & 3^{2} \\
& 55 & 01 \\
& 55 & 30 \\
& 56 & 0
\end{array}
\] \\
\hline \[
\left|\begin{array}{l}
17 \\
18 \\
19 \\
20
\end{array}\right|
\] & \begin{tabular}{rrr}
XI & 54 & 25 \\
54 & 5 \\
53 & 44 \\
53 & 23 \\
53 & 2
\end{tabular} & \begin{tabular}{rrr}
XI & 45 & 28 \\
45 & 16 \\
45 & 6 \\
44 & 55 \\
44 & 46
\end{tabular} & \[
\begin{array}{lll}
\text { XI } & 45 & 13 \\
& 45 & 25 \\
& 45 & 39 \\
& 45 & 53 \\
& 46 & 8
\end{array}
\] & \[
\begin{array}{lll}
\text { XI } & 56 & 29 \\
& 56 & 59 \\
& 57 & 29 \\
& 57 & 59 \\
& 58 & 29
\end{array}
\] \\
\hline \[
\left|\begin{array}{l}
22 \\
23 \\
24 \\
25 \\
25
\end{array}\right|
\] & \(\begin{array}{llr}\text { XI } & 52 & 41 \\ 52 & 21 \\ & 5 \\ 51 & 0 \\ 51 & 40 \\ & 51 & 19\end{array}\) & \begin{tabular}{|ccc}
XI & 44 & 37 \\
44 & 29 \\
44 & 21 \\
44 & 14 \\
44 & 8 \\
\hline
\end{tabular} & \[
\begin{array}{lll}
\text { XI } & 46 & 24 \\
& 46 & 41 \\
& 46 & 58 \\
& 47 & 16 \\
& 47 & 35 \\
&
\end{array}
\] & \[
\begin{array}{lrr}
\text { XI } & 58 & 59 \\
& 59 & 29 \\
& 59 & 59 \\
\text { XII } & 0 & 29 \\
& 0 & 59
\end{array}
\] \\
\hline \[
\left|\begin{array}{l}
27 \\
28 \\
29 \\
30
\end{array}\right|
\] & \begin{tabular}{|cc}
XI & 50 \\
& 59 \\
50 & 39 \\
50 & 20 \\
50 & 0 \\
47 & 41
\end{tabular} & XI \(\begin{array}{rrr}44 & 2 \\ 43 & 57 \\ 43 & 53 \\ 43 & 50 \\ 43 & 48\end{array}\) & \begin{tabular}{|lll}
XI & 47 & 55 \\
48 & 15 \\
48 & 36 \\
48 & 58 \\
49 & 20
\end{tabular} & \begin{tabular}{lll}
XII & 1 & 29 \\
& 1 & 58 \\
& 2 & 27 \\
& 2 & 56 \\
& 3 & 25 \\
& & \\
& & \\
& &
\end{tabular} \\
\hline & & \(43 \quad 46\) & & 3 \\
\hline
\end{tabular}

Equation Tables.
A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The firft Year after Leap-Year.
\begin{tabular}{|c|c|c|c|c|}
\hline & January. & February. & March. & April. \\
\hline ¢ & H. M. S. & H. M. S. & H. M. S. & H. M. S., \\
\hline \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lll}
\text { XII } & 4 & 23 \\
& 4 & 51 \\
& 5 & 19 \\
& 5 & 46 \\
& 6 & 13
\end{array}
\] & \begin{tabular}{rrr}
XII & 14 & 9 \\
14 & 16 \\
14 & 21 \\
14 & 27 \\
14 & 31
\end{tabular} & \[
\begin{array}{rrr}
\text { XII } & 12 & 33 \\
& 12 & 20 \\
& 12 & 7 \\
& 11 & 54 \\
& 11 & 40
\end{array}
\] & \[
\begin{array}{lll}
\text { XII } & \mathbf{3} & 47 \\
& 3 & 39 \\
& \mathbf{3} & 10 \\
& \mathbf{2} & 5 \mathbf{2} \\
& \mathbf{2} & 35
\end{array}
\] \\
\hline \[
\begin{gathered}
6 \\
7 \\
8 \\
9 \\
10
\end{gathered}
\] & \[
\begin{array}{llr}
\text { XII } & 6 & 39 \\
& 7 & 4 \\
& 7 & 30 \\
& 7 & 54 \\
& 8 & 18
\end{array}
\] & \(\begin{array}{rrrr}\text { XII } & 14 & 34 \\ 14 & 37 \\ 14 & 39 \\ 14 & 40 \\ 14 & 40\end{array}\) & \[
\begin{array}{rrr}
\text { XII } 11 & 25 \\
11 & 10 \\
10 & 55 \\
10 & 39 \\
10 & 23
\end{array}
\] & \(\begin{array}{rrr}\text { XII } & \mathbf{2} & 17 \\ & \mathbf{2} & 0 \\ & 1 & 43 \\ & 1 & 25 \\ & 1 & 9\end{array}\) \\
\hline \begin{tabular}{l|}
11 \\
12 \\
13 \\
4 \\
15 \\
15
\end{tabular} & \[
\begin{array}{lrr}
\text { XII } & 8 & 42 \\
9 & 4 \\
9 & 26 \\
9 & 48 \\
10 & 9
\end{array}
\] & \(\begin{array}{lll}\text { XII } & 14 & 39 \\ 14 & 38 \\ 14 & 30 \\ 14 & 33 \\ 14 & 30\end{array}\) & \[
\begin{array}{rrr}
\hline \text { XII } 10 & 7 \\
19 & 50 \\
9 & 33 \\
9 & 16 \\
8 & 58
\end{array}
\] & \[
\begin{array}{|rrr}
\hline \text { XII } & 0 & 52 \\
& 0 & 36 \\
& 0 & 20 \\
& 0 & 5 \\
\text { XI } & 59 & 50
\end{array}
\] \\
\hline \begin{tabular}{l|}
6 \\
7 \\
8 \\
9 \\
\hline
\end{tabular} & XII 10 10 29 & \begin{tabular}{rrr}
XII & 14 & 25 \\
14 & 20 \\
14 & 15 \\
14 & 9 \\
14 & 2 \\
\hline
\end{tabular} & \begin{tabular}{llr}
XII & 8 & 41 \\
& 8 & 23 \\
& 8 & 5 \\
& 7 & 47 \\
& 7 & 29
\end{tabular} & \(\begin{array}{rrr}\text { XI } & 59 & 35 \\ 59 & 21 \\ 59 & 7 \\ 58 \\ 58 \\ 58 & 54 \\ & 41\end{array}\) \\
\hline 21
2
3
4
4 & \begin{tabular}{|lll}
XII & 11 & 59 \\
12 & 15 \\
12 & 30 \\
12 & 44 \\
12 & 58 \\
\hline
\end{tabular} & \[
\begin{array}{lll}
\text { XII } & 13 & 54 \\
13 & 46 \\
13 & 37 \\
13 & 28 \\
13 & 18
\end{array}
\] & \[
\begin{array}{|lll}
\text { XIII } & 7 & 10 \\
& 6 & 52 \\
& 6 & 33 \\
& 6 & 15 \\
& 5 & 56
\end{array}
\] & \[
\left.\begin{array}{|rr}
\text { XI } & 58 \\
& 28 \\
58 & 16 \\
& 58 \\
& 4 \\
57 & 53 \\
& 57
\end{array} \right\rvert\,
\] \\
\hline \begin{tabular}{l}
6 \\
7 \\
8 \\
8 \\
0 \\
\hline
\end{tabular} & \begin{tabular}{rrr}
XII & 13 & 10 \\
13 & 22 \\
13 & 33 \\
13 & 43 \\
13 & 53 \\
\hline
\end{tabular} & \(\begin{array}{rrr}\text { XII } & 13 & 8 \\ 12 & 57 \\ 12 & 45\end{array}\) & \begin{tabular}{lrr}
XII & 5 & 38 \\
& 5 & 19 \\
5 & 1 \\
4 & 42 \\
& 4 & 2.3
\end{tabular} & \[
\begin{array}{llr}
\text { XI } & 57 & 32 \\
57 & 23 \\
& 57 & 14 \\
& 57 & 5 \\
& 56 & 57 \\
& 57
\end{array}
\] \\
\hline & \(14 \quad 1\) & & 45 & \\
\hline
\end{tabular}

A TABLE Thewing what time it ought to be by the Clock when the Sun's Center is on the Meridian.

The firft Year after Leap-Year.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\bigcirc\)} & \multicolumn{2}{|l|}{May.} & June. & July. & \multicolumn{2}{|l|}{Auguft.} \\
\hline & H. M. & S. & H. M. S. & H. M. S. & H. M. & \\
\hline & \begin{tabular}{ll}
XI & 56 \\
56 \\
56 \\
56 \\
56 \\
& 56 \\
& 29 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 49 \\
& 42 \\
& 35 \\
& 29 \\
& 24
\end{aligned}
\] & \[
\begin{array}{lll}
\text { XI } & 57 & 27 \\
& 57 & 36 \\
& 57 & 46 \\
& 57 & 56 \\
& 58 & 6
\end{array}
\] & \[
\begin{array}{lll}
\text { XII } & 3 & 26 \\
& 3 & 37 \\
3 & 48 \\
3 & 58 \\
& 4 & 9
\end{array}
\] & & \[
\begin{aligned}
& 52 \\
& 48 \\
& 43 \\
& 38 \\
& 32
\end{aligned}
\] \\
\hline \[
10
\] & \(\begin{array}{ll}\text { XI } & 56 \\ 56 \\ 56 \\ 56 \\ 56 \\ 56\end{array}\) & \[
\begin{array}{r}
19 \\
14 \\
11 \\
7
\end{array}
\] & \(\begin{array}{rrr}\text { XI } & 53 & 17 \\ & 58 & 27 \\ & 58 & 38 \\ & 58 & 50 \\ & 59 & 2\end{array}\) & \[
\begin{array}{lll}
\text { XII } & 4 & 19 \\
& 4 & 28 \\
& 4 & 37 \\
& 4 & 46 \\
& 4 & 55
\end{array}
\] & \begin{tabular}{lll}
XII & 5 & 25 \\
& 5 & 28 \\
& 5 & 10 \\
& 5 & 2 \\
& 4 & 53
\end{tabular} & \[
\begin{array}{r}
25 \\
28 \\
10 \\
2 \\
53
\end{array}
\] \\
\hline \[
\begin{aligned}
& 11 \\
& 12 \\
& 12 \\
& 14 \\
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \text { XI } 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56
\end{aligned}
\] & \[
0
\] & \[
\begin{array}{lrr}
\hline \text { XI } & 59 & 14 \\
& 59 & 26 \\
& 59 & 38 \\
& 59 & 50 \\
\text { XII } & 0 & 3
\end{array}
\] & \[
\begin{array}{lrr}
\hline \text { XII } & 5 & 3 \\
& 5 & 10 \\
& 5 & 17 \\
& 5 & 24 \\
& 5 & 30
\end{array}
\] & & \[
\begin{aligned}
& 44 \\
& 34 \\
& 24 \\
& 13 \\
& 1
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 16 \\
& 16 \\
& 18 \\
& 19 \\
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \text { XI } 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56
\end{aligned}
\] & \[
\begin{array}{r}
4 \\
7 \\
10
\end{array}
\] & \[
\begin{array}{lll}
\text { XII } & 0 & 16 \\
& 0 & 29 \\
& 0 & 4^{2} \\
& 0 & 55 \\
& 1 & 8
\end{array}
\] & \[
\begin{array}{ll}
5 & 36 \\
5 & 41 \\
5 & 46 \\
5 & 50 \\
5 & 54
\end{array}
\] & \[
\begin{array}{lll}
\text { XII } & 3 & 4 \\
& 3 & 3 \\
& 3 & 2 \\
& 3 & 1 \\
& 2 & 5
\end{array}
\] & \[
\begin{aligned}
& 49 \\
& 37 \\
& 24 \\
& 10 \\
& 56
\end{aligned}
\] \\
\hline 21
22
23
24
25 & \[
\begin{array}{lll}
\text { XI } & 56 & 1 \\
56 & 1 \\
56 & 2 \\
56 & z \\
56 & 3
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& 17 \\
& 22 \\
& 28 \\
& 33
\end{aligned}
\] & \[
\begin{array}{lll}
\text { XII } & 1 & 21 \\
& 1 & 34 \\
& 1 & 47 \\
& 2 & 0 \\
& 2 & 13
\end{array}
\] & \[
\begin{array}{lr}
5 & 57 \\
6 & 0 \\
6 & 2 \\
6 & 3 \\
6 & 4
\end{array}
\] & \[
\begin{array}{lll}
\hline \text { XII } & 2 & 4 \\
& 2 & 2 \\
& 2 & 1 \\
& 1 & 5 \\
& 1 & 4
\end{array}
\] & \[
\begin{aligned}
& 42 \\
& 27 \\
& 12 \\
& 56 \\
& 40
\end{aligned}
\] \\
\hline & \[
\begin{array}{r}
\text { XII } 56 \\
56 \\
56 \\
57 \\
57
\end{array}
\] & \[
\begin{aligned}
& 40 \\
& 47 \\
& 54 \\
& 02 \\
& 10
\end{aligned}
\] & \[
\begin{array}{lll}
\hline \text { XII } & 2 & 25 \\
& 2 & 3^{8} \\
& 2 & 5^{8} \\
& 3 & 02 \\
& 3 & 14
\end{array}
\] & \[
\begin{array}{lrr}
\text { XII } & 6 & 4 \\
& 6 & 4 \\
6 & 3 \\
& 6 & 1 \\
& 5 & 59
\end{array}
\] & \[
\begin{array}{lll}
\hline \text { XII } & 1 & 2 \\
& 1 & \\
& 0 & 4 \\
& 0 & 3 \\
& 0 & 1
\end{array}
\] & \[
\begin{array}{r}
23 \\
6 \\
49 \\
31 \\
13
\end{array}
\] \\
\hline & 57 & 18 & & 5.56 & X1 \(59 \quad 5\) & 55 \\
\hline
\end{tabular}

A TA BL E fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The first Year after Leap-Year.

A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The fecond Year after Leap-Year.

A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The fecond Year after Leap-Year.

Equation Tables.
A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The fecond Year after Leap-Year.

A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The third Year after Leap-Year.

A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The third Year after Leap-Year.
\begin{tabular}{|c|c|c|c|c|}
\hline 0 & May. & June. & July. & uguft. \\
\hline 0 & H. M. S. & H. M. S. & H. M. S. & H. M. S. \\
\hline 1 & \multirow[t]{5}{*}{\[
\begin{array}{lll}
\text { XI } & 56 & 52 \\
56 & 45 \\
56 & 38 \\
56 & 32 \\
56 & 26
\end{array}
\]} & \multirow[t]{5}{*}{\begin{tabular}{lll}
XI & 57 & 22 \\
57 & 31 \\
57 & 41 \\
57 & 51 \\
58 & 1
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{array}{|ccc}
\hline \text { XII } & 3 & 20 \\
& 3 & 31 \\
& 3 & 42 \\
& 3 & 53 \\
& 4 & 4
\end{array}
\]} & \multirow[t]{5}{*}{\(\begin{array}{lll}\text { XII } & 5 & 54 \\ & 5 & 50 \\ & 5 & 46 \\ & 5 & 41 \\ & 5 & 35 \\ & \end{array}\)} \\
\hline 2 & & & & \\
\hline 3 & & & & \\
\hline 4 & & & & \\
\hline 5 & & & & \\
\hline 6 & \multirow[t]{5}{*}{\[
\begin{array}{lll}
\text { XI } & 56 & 21 \\
& 56 & 17 \\
& 56 & 13 \\
& 56 & 9 \\
56 & 6
\end{array}
\]} & \multirow[t]{5}{*}{\[
\begin{array}{lll}
\hline \text { XI } & 58 & 12 \\
& 58 & 23 \\
& 58 & 34 \\
& 58 & 45 \\
& 58 & 57
\end{array}
\]} & \multirow[t]{5}{*}{\(\begin{array}{llll}\text { XII } & 4 & 14 \\ & 4 & 24 \\ & 4 & 34 \\ & 4 & 43 \\ & 4 & 52 \\ & & \\ & & \end{array}\)} & \\
\hline \% & & & & \multirow[t]{2}{*}{\[
\begin{array}{rr}
5 & 29 \\
5 & 22 \\
5 & 15 \\
5 & 7 \\
4 & 58
\end{array}
\]} \\
\hline 8 & & & & XII \\
\hline & & & & \\
\hline 10. & & & & \[
4 \quad 58
\] \\
\hline 11 & \multirow[t]{5}{*}{\(\begin{aligned} & \text { XI } 56 \\ & 56 \\ & 56 \\ & 56 \\ & 56 \\ & 56\end{aligned}\)} & \multirow[t]{5}{*}{\[
\begin{array}{rrr}
\text { XI } & 59 & 8 \\
59 & 21 \\
59 & 33 \\
59 & 45 \\
59 & 58
\end{array}
\]} & \multirow[t]{5}{*}{\(\begin{array}{rrr}\text { XII } & 5 & 0 \\ & 5 & 8 \\ & 5 & 15 \\ & 5 & 22 \\ & 5 & 28 \\ & \end{array}\)} & \multirow[t]{4}{*}{XII} \\
\hline 12 & & & & \\
\hline \({ }^{3}\) & & & & \\
\hline 14 & & & & \\
\hline 15 & & & & \[
47
\] \\
\hline 16 & \multirow[t]{5}{*}{\(\begin{aligned} & \text { XI } 56 \\ & 56 \\ & 56 \\ & 56 \\ & 56 \\ & 56\end{aligned}\)} & \multirow[t]{5}{*}{\(\begin{array}{llll}\text { XII } & 0 & 10 \\ & 0 & 23 \\ & 0 & 36 \\ & 0 & 39 \\ & & & 49\end{array}\)} & \multirow[t]{5}{*}{\(\begin{array}{lll}\text { XII } & 5 & 34 \\ & 5 & 39 \\ & 5 & 4+ \\ & 5 & 48 \\ & 5 & 52 \\ & & \end{array}\)} & \multirow[t]{4}{*}{XII} \\
\hline 17 & & & & \\
\hline 18 & & & & \\
\hline 19. & & & & \\
\hline 20 & & & & \\
\hline 21. & \multirow[t]{5}{*}{\begin{tabular}{rrr}
XI & 56 & 11 \\
56 & 15 \\
56 & 20 \\
56 & 25 \\
56 & 30 \\
\hline 6
\end{tabular}} & \multirow[t]{5}{*}{\(\begin{array}{lll}\text { XII } & 1 & 14 \\ & 1 & 27 \\ & 1 & 40 \\ & 1 & 53 \\ & & \end{array}\)} & \multirow[t]{5}{*}{\(\begin{array}{lll}\text { XII } & 5 & 55 \\ & 5 & 58 \\ & 6 & \\ & 6\end{array}\)} & \multirow[t]{5}{*}{\begin{tabular}{|crr}
XII & \(\mathbf{2}\) & 48 \\
& \(\mathbf{2}\) & 34 \\
& \(\mathbf{2}\) & 19 \\
& \(\mathbf{2}\) & 3 \\
& \(\mathbf{1}\) & 47 \\
& & 47 \\
\hline
\end{tabular}} \\
\hline 22 & & & & \\
\hline 23 & & & & \\
\hline \({ }^{2}\) & & & & \\
\hline 25 & & & & \\
\hline 26 & \multirow[t]{5}{*}{\begin{tabular}{rlr}
XI & 56 & 36 \\
56 & 43 \\
56 & 50 \\
56 & 57 \\
57 & 5 \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{\(\begin{array}{lll}\text { XII } & 2 & 18 \\ & 2 & 31 \\ & 2 & 44 \\ & 2 & 50\end{array}\)} & \multirow[t]{5}{*}{\begin{tabular}{rrrr}
XII & 6 & 3 \\
& 6 & 3 \\
& 6 & 2 \\
& 6 & 1 \\
& 5 & 59 \\
\hline
\end{tabular}} & XII 131 \\
\hline 27 & & & & \multirow{4}{*}{XII} \\
\hline 28 & & & & \\
\hline 29 & & & & \\
\hline 30 & & & & \\
\hline & \(57 \quad 13\) & & & - \\
\hline
\end{tabular}

A TABLE fhewing what Time it ought to be by the Clock when the Sun's Center is on the Meridian.

The third Year after Leàp-Year.

\section*{[176]}
** OBSERVE by a good Meridian Line, or by a Tranfit Inftrument, properly fixed, the Moment when the Sun'scenter is on the Meridian; and fet the Clock to the time marked in the preceding Table for that Day of the year. Then if the Clock goes true, it will point to the Time fhewn in the Table every day afterward at the Inftant when it is Noon by the Sun, which is when his Center is on the Meridian.-Thus, in the firft Year after Leap-year, on the 20 th of October, when it is Noon by the Sun, the true equal Time by the Clock is only 44 minutes 49 feconds paft XI; and on the laft day of December (in that Year) it fhould be 3 minutes 47 feconds paft XII by the Clock when the Sun's center is on the Meridian.

The following Table was made from the preceding one, and is of the common form of a Table of the Equation of Time, fhewing how much a Clock regulated to keep mean or equal time is before or behind the Apparent or Solar time every. Day of the Year.

\title{
A. \\ \\ T A B L E \\ \\ T A B L E \\ OF THE \\ \\ EQUATION OF TIME,
} \\ \\ EQUATION OF TIME,
}

SHEWING
How much a CLOCK fhould be faster or slower than the SUN, at the Noon of every Day in the Year, both in LeapYears and Common Years.
[Tbe Afteriks in the Tables 乃erw where the Equation cbanges to Slow or Faff.]

Equation Tables.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{A TABLE of the Equation of Time, fhewing how much a Clock fhould be fafter or flower than the Sun, every Day of the Year, at Noon.} \\
\hline \multicolumn{7}{|c|}{The Biffextile, or Leap-Year.} \\
\hline & Jan & eb. & March. & April. & May & \\
\hline \[
\overleftrightarrow{\hookrightarrow}
\] & M. & M. & M. S. & M. S. & M. S. & M. S. \\
\hline 3
4
5 & & \[
\begin{array}{lr}
14 & 3 \\
14 & 0 \\
140 & 10 \\
14 & 16 \\
14 & 22 \\
14 & 27
\end{array}
\] & & & & \[
\begin{aligned}
& 2 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 10 \\
& 11 \\
& 11
\end{aligned}
\] \\
\hline 10 & & & \[
\begin{aligned}
& 11 \\
& 11 \\
& 11 \\
& 10 \\
& 10 \\
& 10 \\
& 10 \\
& \hline 10 \\
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{lr}
1 & 40 \\
10 & 0 \\
1 & 29 \\
518 \\
10 & 6 \\
0 & 54
\end{array}
\] \\
\hline \[
\left|\begin{array}{l}
1 \\
1 \\
14 \\
15
\end{array}\right|
\] & \begin{tabular}{ll}
3 & 24 \\
8 & 47 \\
9 & 10 \\
9 & 32 \\
9 & 53
\end{tabular} & \begin{tabular}{lll}
14 & 39 \\
14 & 38 \\
14 & 37 \\
14 & 35 \\
14 & 32 \\
\hline
\end{tabular} & \begin{tabular}{rrr}
10 & 2 \\
9 & 45 \\
9 & 28 \\
9 & 11 \\
8 & 54 \\
\hline 8 &
\end{tabular} & \(\begin{array}{rr}0 & 48 \\ 0 & 32 \\ 0 & 17 \\ 0 & 1 \\ 0 & 1 \\ 0 & 13\end{array}\) & \[
\begin{array}{ll}
3 & 57 \\
3 & 59 \\
4 & 00 \\
4 & 00 \\
3 & 59
\end{array}
\] & \[
\begin{array}{lr}
0 & 4^{2} \\
0 & 30 \\
0 & 18 \\
0 & 18 \\
0 & 5 \\
0 & 8
\end{array}
\] \\
\hline \[
\left\lvert\, \begin{aligned}
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}\right.
\] & \[
\begin{array}{ll}
10 & 14 \\
10 & 34 \\
10 & 53 \\
11 & 12 \\
11 & 30
\end{array}
\] & \(\begin{array}{rrr}14 & 28 \\ 14 & 24 \\ 14 & 19 \\ 14 & 13 \\ 14 & 7\end{array}\) & \[
\begin{array}{ll}
8 & 36 \\
8 & 18 \\
8 & 00 \\
7 & 42 \\
7 & 24
\end{array}
\] & & \[
\begin{array}{ll}
3 & 58 \\
3 & 56 \\
3 & 54 \\
3 & 51 \\
3 & 48
\end{array}
\] & \\
\hline \[
\left|\begin{array}{l}
21 \\
22 \\
23 \\
24 \\
25
\end{array}\right|
\] & \[
\begin{array}{rr}
11 & 47 \\
12 & 3 \\
12 & 19 \\
12 & 34 \\
12 & 48
\end{array}
\] & \(\begin{array}{lll}14 & 00 \\ 13 & 52 \\ 13 & 44 \\ 13 & 35 \\ 13 & 26\end{array}\) & \begin{tabular}{rr}
7 & 6 \\
6 & 47 \\
6 & 29 \\
6 & 10 \\
5 & 52
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}{ }^{34} 46
\] & \begin{tabular}{ll}
3 & 44 \\
3 & 40 \\
3 & 35 \\
3 & 30 \\
3 & 24
\end{tabular} & \[
\begin{array}{ll}
1 & 26 \\
1 & 26 \\
1 & 3 \\
& 39 \\
& 52 \\
2 & 5 \\
2 & 17
\end{array}
\] \\
\hline \[
1 ; 0
\] & \[
\begin{array}{rr}
13 & 1 \\
13 & 13 \\
13 & 25 \\
13 & 36 \\
13 & 46
\end{array}
\] & & \(\begin{array}{ll}5 & 33 \\ 5 & 15 \\ 4 & 56 \\ 4 & 37 \\ 4 & 19\end{array}\) & \[
\begin{array}{ll}
\mathbf{2} & 29 \\
\mathbf{2} & 39 \\
\mathbf{z} & 48 \\
\mathbf{2} & 56 \\
3 & 4
\end{array}
\] & \[
\begin{array}{rr}
3 & 17 \\
3 & 10 \\
3 & 3 \\
2 & 55 \\
2 & 47
\end{array}
\] & \(\begin{array}{rr}2 & 30 \\ 2 & 42 \\ 2 & 54 \\ 3 & 6 \\ 3 & 18 \\ \end{array}\) \\
\hline & 1355 & & 400 & & 239 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{ATABLE of the Lquation of Time, fhewing how much a Clock fhould be fafter or flower than the Sun, every Day of the Year, at Noon.} \\
\hline \multicolumn{7}{|c|}{The Biffexilie, or Leap Year.} \\
\hline & July. & Auguit. & Sept. & October. & Nov. & Dec. \\
\hline & M. S. & M. S: \\
\hline 1
2
3
4
5 & & & & \[
\begin{array}{ll}
10 & 38 \\
10 & 38 \\
10 & 9 \\
11 & 57 \\
11 & 15 \\
11 & 33 \\
11 & 51
\end{array}
\] & \[
\begin{array}{lr}
16 & 15 \\
16 & 015 \\
16 & 0 \\
16 & 15 \\
16 & 13 \\
16 & 11
\end{array}
\] & \[
\] \\
\hline 6 & \[
\begin{array}{rr}
4 & 22 \\
4 & 22 \\
4 & 0 \\
40^{3} & 41 \\
40 \\
4 & 49 \\
4 & 57 \\
\hline
\end{array}
\] & & & \[
\] & \[
\begin{aligned}
& 16 \\
& 16: 7 \\
& 15: 3 \\
& 15: 58 \\
& 15: 52 \\
& 1546
\end{aligned}
\] & \\
\hline 1
2
3
4
5 & \begin{tabular}{rr}
5 & 5 \\
5 & 13 \\
5 & 20 \\
5 & 26 \\
5 & 32 \\
\hline
\end{tabular} & \(\begin{array}{ll}4 & 41 \\ 4 & 31 \\ 4 & 21 \\ 4 & 10 \\ 3 & 58\end{array}\) & \[
\begin{array}{ll}
3 & 50 \\
4 & 11 \\
4 & 32 \\
4 & 53 \\
5 & 14
\end{array}
\] & \[
\begin{array}{rr}
13 & 27 \\
13 & 41 \\
13 & 55 \\
14 & 8 \\
14 & 20
\end{array}
\] & \begin{tabular}{ll}
15 & 38 \\
15 & 29 \\
15 & 20 \\
15 & 10 \\
14 & 59
\end{tabular} & \(\begin{array}{ll}5 & 57 \\ 5 & 28 \\ 4 & 59 \\ 4 & 30 \\ 4 & 00\end{array}\) \\
\hline & \begin{tabular}{ll}
5 & 38 \\
5 & 43 \\
5 & 48 \\
5 & 52 \\
5 & 56
\end{tabular} & \begin{tabular}{rrr}
3 & 46 \\
3 & 33 \\
3 & 20 \\
3 & 6 \\
2 & 52 \\
\hline
\end{tabular} & \(\begin{array}{ll}5 & 35 \\ 5 & 56 \\ 6 & 16 \\ 5 & 37 \\ 6 & 58\end{array}\) & 14 1432 & \begin{tabular}{rrr}
14 & 47 \\
14 & 34 \\
14 & 21 \\
14 & 7 \\
13 & 52 \\
\hline
\end{tabular} & \(\begin{array}{rrr}3 & 31 \\ 3 & 1 \\ 2 & 31 \\ 2 & 1 \\ 1 & 31\end{array}\) \\
\hline 1
2
3
3
4
5 & rrr & \[
\begin{array}{rr}
2 & 38 \\
2 & 23 \\
2 & 7 \\
1 & 51 \\
1 & 35
\end{array}
\] & \[
\begin{array}{ll}
7 & 19 \\
7 & 40 \\
8 & 00 \\
8 & 20 \\
8 & 41
\end{array}
\] & \(\begin{array}{ll}15 & 23 \\ 15 & 31 \\ 15 & 39 \\ 15 & 46 \\ 15 & 52\end{array}\) & \[
\begin{array}{rr}
13 & 36 \\
13 & 19 \\
13 & 2 \\
12 & 44 \\
12 & 25
\end{array}
\] & \[
\begin{array}{lr}
1 & 1 \\
0 & 31 \\
0 & 1 \\
0 & 1 \\
0 & * 29 \\
0 & 59
\end{array}
\] \\
\hline 7
8
9
0 & \begin{tabular}{|rr}
6 & 4 \\
6 & 4 \\
6 & 2 \\
6 & 00 \\
5 & 58
\end{tabular} & \(\begin{array}{rr}1 & 18 \\ 1 & 1 \\ 0 & 1 \\ 0 & 44 \\ 0 & 26 \\ 0 & 8\end{array}\) & \(\begin{array}{rrr}9 & 1 \\ 9 & 21 \\ 9 & 41 \\ 10 & 00 \\ 10 & 19\end{array}\) & \[
\begin{array}{rr}
15 & 58 \\
16 & 3 \\
16 & 7 \\
16 & 10 \\
16 & 12
\end{array}
\] & \(\begin{array}{rrr}12 & 5 \\ 11 & 45 \\ 11 & 24 \\ 11 & 2 \\ 10 & 40\end{array}\) & \\
\hline & \(5 \quad 55\) & 0*11 & & \(16 \quad 14\) & & \\
\hline
\end{tabular}

A TABLE of the Equation of Time, fhewing how much a Clock fhould be fatter or flower than the Sun, every Day of the Year, at Noon.

The firft Year after Leap-Year.

A TABLE of the Equation of Time, flewing how much a Clock flould be fafter or flower than the Sun, every Day of the Year, at Noon.

The firft Year after Leap-Year.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & July. & Auguft. & Sept. & October & Nov. & Dec. \\
\hline 0 & M. S. \\
\hline -3 & \[
\begin{array}{rr}
3 & 26 \\
3 & 2 \\
3 & 37 \\
3 & { }^{\circ} \\
3 & 48 \\
3 & 58 \\
4 & 9
\end{array}
\] & \(\begin{array}{lr}5 & 52 \\ 5 & 52 \\ 5 & 48 \\ 5 & 48 \\ 5 & 43 \\ 5 & 38 \\ 5 & 38 \\ 5 & 32\end{array}\) & \[
\begin{array}{lr}
0 & 24 \\
0 & 24 \\
0 & 0_{1} \\
1 & 2 \\
\hat{R}^{*} & 22 \\
1 & 4^{2}
\end{array}
\] & \[
\begin{array}{ll}
10 & 32 \\
10 & 22 \\
11 & 51 \\
11 & 0 \\
11 & 27 \\
11 & 45
\end{array}
\] & \[
\begin{aligned}
& 16 \\
& 16 \\
& 16 \\
& 16014 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 12
\end{aligned}
\] & \\
\hline \[
\left|\begin{array}{r}
6 \\
7 \\
8 \\
9 \\
10
\end{array}\right|
\] & \[
\begin{array}{lr}
4 & 19 \\
4 & 19 \\
4 \underset{\sim}{2} 28 \\
4 & 37 \\
4 & 46 \\
4 & 55
\end{array}
\] & \begin{tabular}{rr}
5 & 25 \\
5 & 25 \\
5 & \multirow{2}{*}{18} \\
5 & 10 \\
5 & 2 \\
4 & 53
\end{tabular} & & \[
\begin{aligned}
& 122 \\
& 12019 \\
& 12: 35 \\
& 12.51 \\
& 13 \%
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 16 \div 7 \\
& 1603 \\
& 15 \approx 59 \\
& 15 \div 53 \\
& 15 \%
\end{aligned}
\] & \[
\begin{array}{lr}
8 & 19 \\
70353 \\
7 & 0.56 \\
6 & 56 \\
6 & 59 \\
6 & 31
\end{array}
\] \\
\hline 11
12
13
14
15 & \begin{tabular}{rr}
5 & 3 \\
5 & 10 \\
5 & 17 \\
5 & 24 \\
5 & 30
\end{tabular} & \(\begin{array}{rrr}4 & 44 \\ 4 & 34 \\ 4 & 24 \\ 4 & 13 \\ 4 & 1\end{array}\) & \[
\begin{array}{ll}
3 & 44 \\
4 & 5 \\
4 & 26 \\
4 & 47 \\
5 & 8
\end{array}
\] & \[
\begin{array}{ll}
13 & 22 \\
13 & 36 \\
13 & 50 \\
14 & 3 \\
14 & 16
\end{array}
\] & \[
\begin{array}{cc}
15 & 39 \\
15 & 31 \\
15 & 22 \\
15 & 12 \\
15 & 1
\end{array}
\] & \[
\begin{array}{rr}
6 & 3 \\
5 & 35 \\
5 & 6 \\
4 & 37 \\
4 & 8
\end{array}
\] \\
\hline 19 & \begin{tabular}{ll}
5 & 36 \\
5 & 41 \\
5 & 46 \\
5 & 50 \\
5 & 54 \\
\hline
\end{tabular} & \begin{tabular}{ll}
3 & 49 \\
3 & 37 \\
3 & 24 \\
3 & 10 \\
2 & 56 \\
\hline
\end{tabular} & \begin{tabular}{ll}
5 & 29 \\
5 & 50 \\
6 & 10 \\
6 & 31 \\
6 & 5.2 \\
\hline
\end{tabular} & \[
\begin{array}{rr}
14 & 28 \\
14 & 40 \\
14 & 51 \\
15 & 1 \\
15 & 11
\end{array}
\] & \[
\begin{array}{ll}
14 & 50 \\
14 & 37 \\
14 & 24 \\
14 & 10 \\
13 & 55
\end{array}
\] & \[
\begin{array}{rr}
3 & 38 \\
3 & 9 \\
2 & 39 \\
2 & 9 \\
1 & 39
\end{array}
\] \\
\hline 21
22
23
24
25 & \[
\begin{array}{rr}
5 & 57 \\
6 & 00 \\
6 & 2 \\
6 & 3 \\
6 & 4
\end{array}
\] & \[
\begin{array}{ll}
2 & 42 \\
2 & 27 \\
2 & 12 \\
1 & 56 \\
1 & 40
\end{array}
\] & \[
\begin{array}{ll}
7 & 13 \\
7 & 33 \\
7 & 54 \\
8 & 14 \\
8 & 35 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
15 & 20 \\
15 & 29 \\
15 & 36 \\
15 & 43 \\
15 & 50
\end{array}
\] & \[
\begin{array}{rr}
13 & 39 \\
13 & 23 \\
13 & 6 \\
12 & 48 \\
12 & 29
\end{array}
\] & \[
\begin{array}{rr}
1 & 9 \\
0 & 38 \\
0 & 8 \\
0 & 8 \\
0 & 22 \\
0 & 52
\end{array}
\] \\
\hline 26
27
28
29
30 & \(\begin{array}{rr}6 & 4 \\ 6 & 4 \\ 6 & 3 \\ 6 & 1 \\ 5 & 59\end{array}\) & \(\begin{array}{rr}1 & 23 \\ 1 & 6 \\ 0 & 49 \\ 0 & 31 \\ 0 & 13\end{array}\) & \[
\begin{array}{rr}
8 & 55 \\
9 & 15 \\
9 & 34 \\
9 & 54 \\
10 & 13
\end{array}
\] & \[
\begin{array}{rr}
15 & 55 \\
16 & 00 \\
16 & 4 \\
16 & 8 \\
16 & 11
\end{array}
\] & \[
\begin{array}{rr}
12 & 9 \\
11 & 49 \\
11 & 28 \\
11 & 7 \\
10 & 45
\end{array}
\] & \[
\begin{array}{lr}
1 & 22 \\
1 & 20 \\
2 & 51 \\
2 & 20 \\
2 & 50 \\
3 & 19
\end{array}
\] \\
\hline & \(5 \quad 56\) & 0* 5 & & 1613 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{A TABLE of the Equation of Time, fhewing how much a Clock fhould be fafter or flower than the Sun, every Day of the Year, at Noon.} \\
\hline \multicolumn{7}{|c|}{The fecond Year after Leap-Year} \\
\hline & Jan. & Feb. & March. & Apil. & & \\
\hline \[
\stackrel{4}{4}
\] & M. S. & M & M. & M. & M. & M. S. \\
\hline \[
\left.\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned} \right\rvert\,
\] & & \[
\begin{aligned}
& 14 \\
& 140 \\
& 140 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& \hline 19
\end{aligned}
\] & \[
\begin{array}{ll}
12 & 35 \\
12 & 02 \\
120 \\
12 & 0 \\
11 & \pi \\
11 & 96 \\
11 & 42
\end{array}
\] & & \[
\begin{array}{lr}
3 & 10 \\
3 & 17 \\
30 & 17 \\
3 & 24 \\
3 & 30 \\
3 & 36
\end{array}
\] & \[
\begin{array}{lr}
2 & 36 \\
2 & 0 \\
2 & 27 \\
2 & 0 \\
\hline & 17 \\
2 & \pi \\
1 & 57
\end{array}
\] \\
\hline 6
7
8
9
10 & \[
\begin{array}{ll}
6 & 31 \\
6 & 3 \\
7 & 2 \\
7 & 57 \\
7 & 22 \\
7 & 47 \\
8 & 11
\end{array}
\] & \[
\begin{array}{lll}
14 & 32 \\
14 & 30 \\
14 & 35 \\
14 & 37 \\
14 & 39 \\
14 & 39
\end{array}
\] & \[
\begin{array}{ll}
11 & 27 \\
11 & 27 \\
10 & 0^{1} 3 \\
10 \\
10 & 58 \\
10 & 42 \\
10 & 26
\end{array}
\] & \[
\begin{array}{ll}
2 & 20 \\
2 & 20 \\
0 & 0 \\
0 & 36 \\
\vdots & 46 \\
1 & 29 \\
1 & 12
\end{array}
\] & & \\
\hline \[
|15|
\] & \begin{tabular}{rr}
8 & 35 \\
8 & 58 \\
9 & 21 \\
9 & 43 \\
10 & 4 \\
\hline
\end{tabular} & \(\begin{array}{ll}14 & 39 \\ 14 & 38 \\ 14 & 36 \\ 14 & 34 \\ 14 & 31\end{array}\) & \[
\begin{array}{rr}
10 & 10 \\
9 & 54 \\
9 & 37 \\
9 & 20 \\
9 & 3
\end{array}
\] & \[
\begin{array}{lr}
0 & 56 \\
0 & 40 \\
0 & 24 \\
0 & 9 \\
0 & \text { o } \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
3 & 57 \\
3 & 59 \\
4 & 00 \\
4 & 00 \\
4 & 00
\end{array}
\] & \[
\begin{array}{ll}
0 & 49 \\
0 & 37 \\
0 & 24 \\
0 & 12 \\
0 & 12
\end{array}
\] \\
\hline \[
\begin{aligned}
& 16 \\
& 17 \\
& 18
\end{aligned}
\] & \[
\left.\begin{array}{rr}
10 & 24 \\
10 & 44 \\
11 & 3 \\
11 & 22 \\
11 & 39
\end{array} \right\rvert\,
\] & \[
\begin{array}{rr}
14 & 27 \\
14 & 22 \\
14 & 17 \\
14 & 11 \\
14 & 4
\end{array}
\] & \[
\begin{array}{ll}
8 & 45 \\
8 & 27 \\
8 & 10 \\
7 & 52 \\
7 & 34
\end{array}
\] & & \[
\begin{array}{ll}
3 & 59 \\
3 & 58 \\
3 & 56 \\
3 & 53 \\
3 & 50
\end{array}
\] & \[
\begin{array}{ll}
0 & 14 \\
0 & 0 \\
0 & 27 \\
0 & { }_{20}^{0} \\
0 & 40 \\
0 & 53 \\
1 & 63
\end{array}
\] \\
\hline 21
22
23
24
25
25 & \[
\begin{array}{ll}
11 & 56 \\
12 & 12 \\
12 & 27 \\
12 & 41 \\
12 & 55
\end{array}
\] & \[
\begin{array}{ll}
13 & 57 \\
13 & 49 \\
13 & 40 \\
13 & 31 \\
13 & 21
\end{array}
\] & \(\begin{array}{cr}7 & 15 \\ 6 & 57 \\ 6 & 38 \\ 6 & 20 \\ 6 & 1\end{array}\) & \[
\begin{array}{lr}
1 & 28 \\
1 & \ddot{0} \\
1 & 40 \\
1 & 5 \\
2 & 52 \\
2 & 4 \\
2 & 15
\end{array}
\] & \[
\begin{array}{ll}
3 & 47 \\
3 & 43 \\
3 & 38 \\
3 & 33 \\
3 & 28
\end{array}
\] & \\
\hline 26
27
28
29
30 & \[
\begin{array}{lr}
13 & 7 \\
13 & 19 \\
13 & 30 \\
13 & 40 \\
13 & 50
\end{array}
\] & \[
\begin{array}{ll}
13 & 10 \\
12 & 59 \\
12 & 47
\end{array}
\] & \(\begin{array}{rr}5 & 42 \\ 5 & 23 \\ 5 & 5 \\ 4 & 46 \\ 4 & 27\end{array}\) & \(\begin{array}{lr}2 & 25 \\ 2 & 35 \\ 2 & 45 \\ 2 & 54 \\ 3 & 2\end{array}\) & \(\begin{array}{rr}3 & 22 \\ 3 & 15 \\ 3 & 8 \\ 3 & 1 \\ 2 & 53\end{array}\) & \(\begin{array}{ll}2 & 22 \\ 2 & 34 \\ 2 & 46 \\ 2 & 58 \\ 3 & 10\end{array}\) \\
\hline & \(13 \quad 58\) & & 4 & & 24 & \\
\hline
\end{tabular}

A TABLE of the Equation of Time, fhewing how much a Clock fhoald be fatter or flower than the Sun, every Day of the Year, at Noon.

The third Year after Leap-Year.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Jan. & Feb. & March. & April. & May & June. \\
\hline \(\cdots\) & M. \({ }^{\text {S }}\) & M. S. \\
\hline \[
\left.\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned} \right\rvert\,
\] & \begin{tabular}{rr}
4 \\
4 & 8 \\
4 & \(C\) \\
\hline
\end{tabular} & & \[
\] & & & \\
\hline 10 & & \[
\begin{array}{lll}
14 & 3^{2} \\
14 & \stackrel{\cong}{\cong} 35 \\
14 & \approx & 37 \\
14 & 39 \\
14 & 40 .
\end{array}
\] & \[
\begin{array}{ll}
11 & 31 \\
11 & 31 \\
11 & \ddot{N}_{1}^{1} \\
11 & 2 \\
10 & 26 \\
10 & 40 \\
10 & 30
\end{array}
\] & \[
\begin{array}{ll}
2 & 25 \\
2 & 25 \\
2 & 8 \\
1 & 8 \\
& 51 \\
1 & 34 \\
1 & 17
\end{array}
\] & \[
\begin{array}{ll}
3 & 39 \\
3: & 0 \\
3 & =43 \\
3 & 47 \\
3 & 51 \\
3 & 54
\end{array}
\] & \\
\hline \[
\left|\begin{array}{l}
12 \\
13 \\
14 \\
15
\end{array}\right|
\] & \[
\begin{array}{ll}
8 & 30 \\
8 & 53 \\
9 & 16 \\
9 & 38 \\
9 & 59
\end{array}
\] & \(\begin{array}{lll}14 & 40 \\ 14 & 39 \\ 14 & 37 \\ 14 & 35 \\ 14 & 31\end{array}\) & \[
\begin{array}{rr}
10 & 14 \\
9 & 58 \\
9 & 41 \\
9 & 24 \\
9 & 7
\end{array}
\] & \[
\begin{array}{lr}
1 & 1 \\
0 & 45 \\
0 & 29 \\
0 & 13 \\
0 & 1
\end{array}
\] & \[
\begin{array}{ll}
3 & 56 \\
3 & 58 \\
3 & 59 \\
4 & 00 \\
4 & 00
\end{array}
\] & \[
\begin{array}{ll}
\circ & 51 \\
0 & 39 \\
0 & 27 \\
0 & 15 \\
0 & 2
\end{array}
\] \\
\hline \[
\begin{array}{r}
16 \\
17 \\
18 \\
19
\end{array}
\] & \[
\begin{array}{ll}
10 & 20 \\
10 & 39 \\
10 & 58 \\
11 & 16 \\
11 & 34
\end{array}
\] & \[
\begin{array}{rr}
14 & 27 \\
14 & 23 \\
14 & 17 \\
14 & 11 \\
14 & 5
\end{array}
\] & \[
\begin{array}{ll}
8 & 49 \\
8 & 32 \\
8 & 14 \\
7 & 56 \\
7 & 37
\end{array}
\] & \[
\begin{array}{ll}
0 & 17 \\
0 & 0^{2} \\
0 & 3^{2} \\
0 & { }_{2}^{6} \\
1 & 00 \\
1 & 13
\end{array}
\] & \[
\begin{array}{ll}
3 & 59 \\
3 & 58 \\
3 & 56 \\
3 & 54 \\
3 & 52
\end{array}
\] & \\
\hline \[
\begin{aligned}
& 23 \\
& 24 \\
& 25 \\
& 1
\end{aligned}
\] & \[
\begin{array}{lr}
11 & 51 \\
12 & 7 \\
12 & 22 \\
12 & 36 \\
12 & 50
\end{array}
\] & \(\begin{array}{lll}13 & 57 \\ 13 & 49 \\ 13 & 41 \\ 13 & 32 \\ 13 & 22\end{array}\) & \[
\begin{array}{rr}
7 & 19 \\
7 & 00 \\
6 & 42 \\
6 & 23 \\
6 & 4
\end{array}
\] & \[
\begin{array}{rr}
1 & 26 \\
1 & 26 \\
1 & 3 \\
1 & 3 \\
1 & 50 \\
2 & 2 \\
2 & 13
\end{array}
\] & \[
\begin{array}{ll}
3 & 49 \\
3 & 45 \\
3 & 40 \\
3 & 35 \\
3 & 30
\end{array}
\] & \\
\hline \[
\begin{aligned}
& 26 \\
& 27 \\
& 28 \\
& 29 \\
& 30
\end{aligned}
\] & \[
\begin{array}{lr}
13 & 3 \\
13 & 15 \\
13 & 26 \\
13 & 37 \\
13 & 47
\end{array}
\] & \[
\begin{array}{rr}
13 & 12 \\
13 & 1 \\
12 & 50
\end{array}
\] & \[
\begin{array}{rr}
5 & 46 \\
5 & 27 \\
5 & 8 \\
4 & 50 \\
4 & 31
\end{array}
\] & \[
\begin{array}{ll}
2 & 23 \\
2 & 33 \\
2 & 43 \\
2 & 52 \\
3 & 00
\end{array}
\] & \[
\begin{array}{rr}
3 & 24 \\
3 & 17 \\
3 & 10 \\
3 & 3 \\
2 & 55
\end{array}
\] & \(\begin{array}{ll}2 & 18 \\ 2 & 31 \\ 2 & 43 \\ 2 & 56 \\ 3 & 8\end{array}\) \\
\hline 13 & \(13 \quad 56\) & & 413 & & 247 & \\
\hline
\end{tabular}

A TABLE of the Equation of Time, fhewing how much a Clock fhould be fafter or flower than the Sun, every Day of the Year, at Noon.

The third Year after Leap-Year.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & July. & Augult. & Sept. & October. & Nov. & Dec. \\
\hline \(\bigcirc\) & M. S. \\
\hline \[
5
\] & & \(\begin{array}{rr}5 & 54 \\ 5 & 50 \\ 5 & 50 \\ 5 & 46 \\ 5 & 41 \\ 5 & 35\end{array}\) & & & \[
\begin{array}{ll}
16 & 13 \\
16 & 014 \\
16 & 10 \\
16 & 14 \\
16 & 11 \\
16
\end{array}
\] & \\
\hline \[
\left|\begin{array}{r}
7 \\
8 \\
9 \\
10
\end{array}\right|
\] & & \[
\begin{array}{rl}
5 & 29 \\
5 & 29 \\
5 & 02 \\
5 & 02 \\
5 & 7 \\
4 \\
4 & 7 \\
4
\end{array}
\] & \[
\] & \[
\begin{array}{lr}
11 & 53 \\
12 & 00 \\
12 & 10 \\
12 . & 27 \\
12 & 43 \\
12 & 59
\end{array}
\] & \[
\begin{array}{ll}
16 & 8 \\
16 \ddot{0} & 5 \\
16 \% & 1 \\
15: 55 \\
15 & 49
\end{array}
\] & \\
\hline 111 & \begin{tabular}{rr}
5 & 00 \\
5 & 8 \\
5 & 15 \\
5 & 22 \\
5 & 28 \\
5
\end{tabular} & \[
\begin{array}{rrr}
4 & 49 \\
4 & 40 \\
4 & 29 \\
4 & 18 \\
4 & 7
\end{array}
\] & \[
\begin{array}{ll}
3 & 34 \\
3 & 54 \\
4 & 15 \\
4 & 36 \\
4 & 57
\end{array}
\] & \[
\begin{array}{ll}
13 & 14 \\
13 & 29 \\
13 & 43 \\
13 & 57 \\
14 & 10
\end{array}
\] & \[
\begin{array}{rr}
15 & 43 \\
15 & 35 \\
15 & 27 \\
15 & 17 \\
15 & 7
\end{array}
\] & \begin{tabular}{ll}
6 & 17 \\
5 & 49 \\
5 & 20 \\
4 & 52 \\
4 & 23
\end{tabular} \\
\hline \[
\begin{aligned}
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}
\] & \[
\begin{array}{ll}
5 & 34 \\
5 & 39 \\
5 & 4+ \\
5 & 48 \\
5 & 5^{2}
\end{array}
\] & \[
\begin{array}{rr}
3 & 55 \\
3 & 43 \\
3 & 30 \\
3 & 17 \\
3 & 3
\end{array}
\] & \[
\begin{array}{rr}
5 & 18 \\
5 & 40 \\
6 & 1 \\
6 & 22 . \\
6 & 43
\end{array}
\] & \[
\begin{array}{rr}
14 & 23 \\
14 & 35 \\
14 & 46 \\
14 & 57 \\
15 & 7
\end{array}
\] & \[
\begin{array}{rr}
14 & 56 \\
14 & 44 \\
14 & 31 \\
14 & 18 \\
14 & 3
\end{array}
\] & \(\begin{array}{ll}3 & 54 \\ 3 & 24 \\ 2 & 54 \\ 2 & 24 \\ 1 & 54\end{array}\) \\
\hline 21
22
23
24
25
25 & \begin{tabular}{cc}
5 & 55 \\
5 & 58 \\
6 & 00 \\
6 & 2 \\
6 & 3
\end{tabular} & \begin{tabular}{rr}
& 48 \\
2 & 48 \\
2 & 34 \\
2 & 19 \\
2 & 3 \\
1 & 47
\end{tabular} & \[
\begin{array}{rr}
7 & 4 \\
7 & 24 \\
7 & 45 \\
8 & 5 \\
8 & 25
\end{array}
\] & \[
\begin{array}{ll}
15 & 17 \\
15 & 25 \\
15 & 33 \\
15 & 41 \\
15 & 48
\end{array}
\] & \[
\begin{array}{ll}
13 & 48 \\
13 & 32 \\
13 & 15 \\
12 & 57 \\
12 & 39
\end{array}
\] & \[
\begin{array}{lr}
1 & 24 \\
0 & 54 \\
0 & 24 \\
0 & 4 \\
0 & 6 \\
0 & 36
\end{array}
\] \\
\hline \[
\begin{aligned}
& 27 \\
& 28 \\
& 29 \\
& 30
\end{aligned}
\] & \begin{tabular}{rrr}
6 & 3 \\
6 & 3 \\
6 & 2 \\
6 & 1 \\
5 & 59 \\
\hline
\end{tabular} & \(\begin{array}{ll}1 & 31 \\ 1 & 14 \\ 0 & 57 \\ 0 & 39 \\ 0 & 22\end{array}\) & \(\begin{array}{rrr}8 & 46 \\ 9 & 6 \\ 9 & 25 \\ 9 & 45 \\ 10 & 4\end{array}\) & \[
\begin{array}{rr}
15 & 53 \\
15 & 59 \\
16 & 3 \\
16 & 7 \\
16 & 10
\end{array}
\] & \begin{tabular}{ll}
12 & 20 \\
12 & 00 \\
11 & 39 \\
11 & 18 \\
10 & 56
\end{tabular} & \\
\hline & \(5 \quad 57\) & \(\bigcirc 4\) & & \(16 \quad 12\) & & \\
\hline
\end{tabular}

A concife Equation Table，adapted to the Second Year after Leap－Year，and will be within a Minute of the Truth for every Year ；Shewing to the neareft full Minute，how much a Clock Thould be fafter or flower than the Sun．By Mr．Smeaton．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 3 . x_{2} \\
& \text { 든 } \\
& 0 \\
& \hline 0
\end{aligned}
\] & \(\left\lvert\, \begin{array}{cc}3 & 0 \\ 0 & 8 \\ 3 & 5 \\ \vec{y} & 5\end{array}\right.\) & & \[
\left.\left\lvert\, \begin{array}{|c}
3 \\
0 \\
0 \\
0 \\
3 \\
0
\end{array}\right.\right)
\] & 页现 & \[
\begin{array}{|lll}
2 & 0 \\
0 & 0 \\
0 & 0
\end{array}
\] & \\
\hline \multirow[t]{10}{*}{Jan． 11} & & \multirow[t]{8}{*}{Apr． 1} & & \multirow[t]{7}{*}{\begin{tabular}{|r|}
Aug． 10 \\
15 \\
20 \\
24 \\
28 \\
31 \\
\％ \\
Sept．
\end{tabular}} & \multirow[t]{6}{*}{} & \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
\text { Oct. } 27 \\
\text { Nov. } 8
\end{array}\right|
\]} & \multirow[t]{2}{*}{16} \\
\hline & & & & & & & \\
\hline & & & 1 & & & 15 & 15 \\
\hline & 8 & & \(\stackrel{1}{\square}\) & & & 20 & 140 \\
\hline & 9 \({ }_{7}^{\text {a }}\) & & & & & 24 & 130 \\
\hline & \(10^{7}\) & & 1 & & & 27 & 12云 \\
\hline & 11 咢 & & 20 & & I & Dec． \(\begin{array}{r}30 \\ 2\end{array}\) & 110 울 \\
\hline & 12 & & & & 2 & & 9 \\
\hline & 13 万 & May \({ }_{1}\) & 4 砍 & 9 & 30 & & 8 F \\
\hline & 14 cos & 29 & 3宫 & 12 & \(4 \%\) & & 7 \％ \\
\hline Feb． 6 & 15 & June 5 & \({ }^{\text {a }}\) & 15 & 5 ＊ & 11 & 6 \\
\hline 21 & 14 & 10 & 1 & 18 & 6 \％ & 13 & － \\
\hline 27 & 13 & 15 & \(\bigcirc\) & 21 & 7 & 15 & 5 ces \\
\hline r． 4 & 12 & ＊ & & 24 & 8 & 18 & ？ \\
\hline & 11 & 20 & & 27 & 9 号 & 20 & 2 \\
\hline 12 & 10 & 24 & & 30 & \(10^{2}\) & 22 & 1 \\
\hline 15 & 9 & & 3 年 & Oct． 3. & 11 \％ & 24 & \(\bigcirc\) \\
\hline 19 & 8 & July 4 & 4 a & 6 & 120 & ＊ & \\
\hline 22 & 7 & 11 & \(5 \stackrel{\text { ® }}{\text { ¢ }}\) & 10 & 13 － & 26 & \\
\hline 25 & 6 & 26 & 6. & 14 & \(14^{\circ}\) & 28 & 2 \\
\hline 28 & 5 & & & 19 & 15 & O & ？ \\
\hline
\end{tabular}

This Table is near enough for regulating com－ mon Clocks and Watches．It may be eafily co－ pied by the Pen，and being doubled，may be put into a Pocket－book．

\section*{C H A P. XV.}

T'be Moon's Surface mountainous: Her Pbafes defcribed: Her Path, and the Patbs of '7upiter's Moons delineated: The Proportions of the Diameters of their Orbits, and thofe of Saturn's Moons, to each other; and to the Diameter of the Sun.
252. RY looking at the Moon with an ordinary telefcope, we perceive that her furface is

PI ATE VII. diverfified with long tracts of prodigious high mountains and deep cavities. Some of her mountains, by comparing their height with her diameter (which is 2180 miles), are found to be three times higher than the higheft hills on our Earth. This ruggednefs of the Moon's furface is of great ufe to us, by reflecting the Sun's light to all fides: for if the Moon were fmooth and polifhed like a looking-glafs, or covered with water, fhe could never diftribute the Sun's light all round; only in fome pofitions fhe would fhew us his image, no bigger than a point, but with fuch a luftre as would be hurtful to our eyes.
253. The Moon's furface being fo uneven, many have wondered why her edge appears not jagged as well as the curve bounding the light and dark parts. But if we confider, that what we call the edge of the Moon's Difc is not a fingle line fet round with mountains, in which cafe it would appear irregularly indented, but a large zone having many mountains lying behind one another from the obferver's eye, we fhall find that the mountains in fome rows will be oppofite to the vales in others, and fill up the inequalities fo as to make her appear quite round; juft as when one looks at an orange, although its roughnefs be very difcernible on the fide next the eye, efpecially if the Sun or a Candle Chines obliquely on that fide, yet the line terminating

\section*{The Moon's} furface mountainous.

PLATE VII.

The Moon bas no twi-

\section*{Jight.}

\section*{The Moon's Phafes.}
terminating the vifible part fill appears finooth and even.
254. As the Sun can only enlighten that half of the Earth which is at any moment turned toward him, and being withdrawn from the oppofite half, leaves it in darknefs; fo he likewife doth to the Moon: only with this difference, that the Earth, being furrounded by an Atmofphere, and the Moon, as far as we know, having none, we have twilight after the Sun fets; but the Lunar inhabitans have an immediate tranfition from the brighteft Sun-fhine to the blackeft darknefs, § 177. For, let trks we the earth, and \(A, B, C, D\), \(E, F, G, H\) the Moon in eight different parts of
Fig. I. her Orbit. As the Earth turns round its Axis, from weft to eaft, when any place comes to \(t\) the twilight begins there, and when it revolves from thence to \(r\) the Sun \(S\) rifes; when the place comes to \(s\) the Sun fets, and when it comes to \(w\) the twilight ends. But as the Moon turns round her Axis, which is only once a month, the moment that any point of her furface comes to \(r\) (fee the Moun at G) the Sun rifes there without any previous warning by twilight; and when the fame point comes to \(s\) the Sun fets, and that point goes into darknefs as black as at midnight.
255. The Moon being an opaque fpherical body (for her hills take off no more from her roundnefs than the inequalities on the furface of an orange take off from its roundnefs) we can only fee that part of the enlightened half of her which is toward the Earth. And therefore when the Moon is at \(A\), in conjunction with the Sun \(S\), her dark half is toward the Earth, and fhe difappears, as at \(a\), there being no light on that half to render it vifible. When fhe comes to her firf Oetant at \(B\), or has gone an eighth part of her Orbit from her Conjunction, a quarter of her enlightened fide is feen toward the Earth, and fhe appears horned, as at b. When he has gone a quarter of her Orbit
from between the Earth and Sun to \(C\), fhe fhews us one half of her enlightened fide, as at \(c\), and we fay, fhe is a quarter old. At \(D\) fhe is in her fecond Octant, and by fhewing us more of her enlightened fide the appears gibbous, as at \(d\). At \(E\) her whole enlightened fide is toward the Earth, and therefore fhe appears round, as at \(e\), when we fay it is Full Moon. In her third Octant at \(F\), part of her dark fide being toward the Earth, fhe again appears gibbous, and is on the decreafe, as at \(f\). At \(G\) we fee jutt one half of her enlightened fide, and the appears half decreafed, or in her third Quarter, as at \(g\). At \(H\) we only fee a quarter of her enlightened fide, being in her fourth Oetant, where fhe appears horned, as at \(b\). And at \(A\), having completed her courfe from the Sun to the Sun again, fhe difappears; and we fay, it is New Moon. Thus, in going from \(A\) to \(E\), the Moon feems continually to increafe; and in going from \(E\) to \(A\), to decieafe in the fame proportion; having like Phafes at equal diftances from \(A\) to \(E\), but as feen from the Sun \(S\), fhe is always Full.
256. The Moon appears not perfectly round when the is Full in the higheft or loweft part of her Orbit, becaufe we have not a full view of her enlightened fide at that time. When Full in the higheft part of her Orbit, a fmall deficiency appears on her lower edge; and the contrary when Full in the loweft part of her Orbit.
257. It is plain by the figure, that when the
Moon changes to the Earth, the Earth appears

The Moons Dife not always quite round whes full. Full to the Moon; and vice verfa. For when the
Moon is at \(A\), Nere to the Earth, the whole enlightened fide of the Earth is toward the Moon; and when the Moon is at E, Full to the Earth, its dark fide is toward her. Hence a New Moon anfwers to a Full Earth, and a Full Moon to a New Earth. The Quarters are alfo reverfed to each other.
258. Between the third Quarter and Change, the An AgreeMoon is frequently vifible in the forenoon, even

The Phafes of the Earth and Moon costraty.
when the Sun fhines; and then fhe affords us an opportunity of feeing a very agreeable appearance wherever we find a globular ftone above the level of the eye, as fuppofe on the top of a gate. For if the Sun fhines on the flone, and we place ourfelves fo as the upper part of the fone may juft feem to touch the point of the Moon's lowernioft horn, we fhall then fee the enlightened part of the ftone exactly of the fame fhape with the Moon; horned as fhe is, and inclined the fame way to the Horizon. The reafon is plain; for the Sun enlightens the fone the fame way as he does the Moon: and both being Globes, when we put ourfelves into the above fituation, the Moon and ftone have the fame pofition to our eyes; and therefore we muft fee as much of the illuminated part of the one as of the other.

The Nonagefimal Degree, what.
259. The pofition of the Moon's Cufps, or a right line touching the points of her horns, is very differently inclined to the Horizon at different hours of the fame days of her age. Sometimes fhe ftands, as it were, upright on her lower horn, and then fuch a line is perpendicular to the Horizon; when this happens, fhe is in what the Aftronomers call the Nonagefinal Degree; which is the highett point of the Ecliptic above the Horizon at that time, and is go degrees from both fides of the Horizon where it is then cut by the Ecliptic. But this never happens when the Moon is on the Meridian, except when fhe is at the very beginning of Cancer or Capricorn.
260. The inclination of that part of the Ecliptic to the Horizon in which the Moon is at any time when horned, may be known by the polition of her horns; for a right line touching their points is perpendicular to the Ecliptic. And as the angle which the Moon's Orbit makes with the Eclipric can never raife her above, nor deprefs her below the Ecliptic, more than two minutes of a degree, as feen from the Sun; it can have no fenfible

How the inclination of the Ecliptic may be found by the pafrition of the Moon's hurns.
fenible effect upon the pofition of her horns.
plate Therefore, if a Quadrant be held up, fo as one of its edges may feem to touch the Moon's horns, the graduated fide being kept toward the eye, and as far from the eye as it can be conveniently held, the Arc between the Plumb-line and that edge of the Quadrant which feems to touch the Moon's horns will thew the inclination of that part of the Ecliptic to the Horizon. And the arc between the other edge of the Quadrant and Plumbline will fhew the inclination of a line, touching the Moon's horns, to the Horizon:
261. The Moon generally appears as large as the Sun; for the Angle \(v k A\), under which the Moon is feen from the Earth, is the fame with the Angle \(L k M\), under which the Sun is feen from it.

Fig. I.
Why the Moon appears as big as the Sun. And therefore the Moon may hide the 'Sun's whole Dife from us, as fhe fometimes does in folar Eclipfes. The reafon why fhe does not eclipfe the Sun at every Change, fhall be explained afterward. If the Moon were farther from the Earth, as at \(a\), the would never hide the whole of the Sun from us; for then the would appear under the Angle \(N k O\), eclipfing only that part of the Sun which lies between \(N\) and \(O\) : were the ftill further from the Earth, as at \(X\), the would appear under the fmall angle \(\mathcal{T} k W\), like a fpot on the Sun, hiding only the part \(\tau W\) from our fight.
262. That the Moon turns round her Axis in the time that the goes round her Orbit, is quite demonftrable; for a fpectator at reft, without the periphery of the Moon's Orbit, would fee all

A proof of the Moon's turning round her Axis. her fides turned regularly toward him in that time. She turns round her Axis from any Star to the fame Star again in 27 days 8 hours; from the Sun to the Sun again in \(29 \frac{1}{2}\) days: the former is the length of her fydereal day, and the latter the length of her folar day. A body moving round the Sun would have a folar day in every revolution without turning on its Axis; the fame as if it
had kept all the while at reft, and the Sun moved round it: but without turning round its Axis it could never have one fydereal day, becaule it would always keep the fame fide toward any given Star.
263. If the Earth had no annual motion, the Moon would go round it fo as to complete a Lunation, a fydereal, and a folar day, all in the fame time. But becaufe the Earth goes forward in its Orbit while the Moon goes round the Earth in her Orbit, the Moon mult go as much more than round her Orbit from Change to Change in completing a folar day, as the Earth has gone forward in its Orbit during that time, i.e. almoft a twelfth part of a Circle.

Familiarly reprefented.
264. The Moon's periodical and fynodical revolution may be familiarly reprefented by the motions of the hour and minute-hands of a watch round its dial-plate, which is divided into i2 equal parts or hours, as the Ecliptic is divided into 12 Signs, and the year into 12 months. Let us fuppofe thefe 12 hours to be 12 Signs, the hour-hand the Sun, and the minute-hand the Moon; then the former will go round once in a year, and the latter once in a month: but the Moon, or minutehand, muft go more than round from any point of the Circle where it was laft conjoined with

A Table flewing the times that the hour and misutehands of a watch are in conjunction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Conj. & H. & M. & S. & "' & "'1' & \(\mathrm{vp}^{\text {ts. }}\) \\
\hline 1 & IT & 5 & 27 & 16 & 21 & \(49{ }^{\frac{7}{17}}\) \\
\hline 2 & II & 10 & 54 & 32 & 43 & \(38{ }^{\frac{2}{13}}\) \\
\hline 3 & III & 16 & 21 & 49 & 5 & \(27 \frac{3}{15}\) \\
\hline 4 & IIII & 21 & 49 & 5 & 27 & \(16_{T_{5}^{4}}^{4}\) \\
\hline 5 & V & 27 & 10 & 21 & 49 & \(55^{\frac{5}{1 / 5}}\) \\
\hline 6 & VI & 32 & 43 & 38 & 10 & \(54 \frac{6}{15}\) \\
\hline 7 & VII & 38 & 10 & 54 & 32 & \(43{ }^{\frac{7}{7}{ }^{7}}\) \\
\hline 8 & VIII & 43 & 38 & 10 & 54 & \(32 \frac{8}{7}{ }^{\frac{8}{7}}\) \\
\hline 9 & IX & 49 & 5 & 27 & 16 & \(21{ }^{\text {T\% }}\) \\
\hline 10 & X & 54 & 32 & 43 & 38 & \(10 \frac{1}{3}{ }^{\circ}\) \\
\hline 11 & XII & - & - & - & - & \(\bigcirc\) \\
\hline
\end{tabular}
the Sun, or hour-hand, to overtake it again: for the hour-hand, being in motion, can never be overtaken by the minure-hand at that point from which they ftarted at their laft conjunction. The firft column of the preceding Table fhews the number of conjunctions which the hour and minute-hand make while the hour-hand goes once round the dial-plate; and the other columns fhew the times when the two hands meet at each conjunction. Thus, fuppofe the two hands to be in conjunction at XII, as they always are; then, at the firft following conjunction it is 5 minutes 27 feconds 16 thirds 21 fourths \(49 \frac{1}{1 T}\) fifths paft \(I\), where they meet: at the fecond conjunction it is 10 minutes 54 feconds 32 thirds 43 fourths \(38_{T}^{2 T}\) fifths paft II; and fo on. This, though an eafy illuftration of the motions of the Sun and Moon, is not precife as to the times of their conjunctions; becaufe, while the Sun goes round the Ecliptic, the Moon makes \(12 \frac{1}{3}\) conjunctions with him; but the minutehand of a watch or clock makes only i i conjunctions with the hour-hand in one period round the dial-plate. But if, inftead of the common wheelwork at the back of the dial-plate, the Axis of the minute hand had a pinion of 6 leaves turning a wheel of 74 , and this laft turning the hour-hand, in every revolution it makes round the dial plate, the minute-hand would make \(12 \frac{1}{3}\) conjunctions with it; and fo would be a pretty device for hewing the motions of the Sun and Moon; efpecially, as the noweft moving hand might have a little Sun fixed on its point, and the quickeft a little Moon.
265. If the Earth had no annual motion, the Moon's motion round the Earth, and her track in open fpace, would be always the fame *. But

The Morn's motion through open fpace defcribed. * In this place, we may confider the Orbits of all the Sa-
tellites as circular, with refpect to their primary Planets; be-
caufe the excentricities of their Orbits are too fmall to effect
the Phenomena here defcribed.

PLATE
as the Earth and Moon move round the Sun, the Moon's real path in the Heavens is very different from her vifible path round the Earth: the latter being in a progreffive Circle, and the former in a curve of different degrees of concavity, which would always be the fame in the fame parts of the Heavens, if the Moon performed a compleat number of Lunations in a year without any fraction.

An idea of the Earth's path, and the Moon's.
266. Let a nail in the end of the axle of a cha-riot-wheel reprefent the Earth, and a pin in the nave the Moon; if the body of the chariot be propped up fo as to keep that wheel from touching the ground, and the wheel be then turned round by hand, the pin will defcribe a Circle both round the nail, and in the fpace it moves through. But if the propsbe taken away, the horfes put to, and the chariot driven over a piece of ground which is circularly convex; the nail in the axle will defcribe a circular curve, and the pin in the nave will fill defcribe a circle round the progreffive nail in the axle, but not in the fpace through which it moves. In this cafe, the curve defcribed by the nail will refemble in miniature as much of the Earth's annual path round the Sun, as it defcribes while the Moon goes as often round the Earth as the pin does round the nail: and the curve defcribed by the nail will have fome refemblance of the Moon's path during fo many Lunations.

Let us now fuppofe that the radius of the circular curve defcribed by the nail in the axle is to the radius of the circle which the pin in the nave defcribes round the axle as \(337 \frac{1}{2}\) to 1 ; which is the proportion of the radius or femi-diameter of the Earth's Orbit to that of the Moon's; or of the
Fig. II. circular curve \(A \geq 234567 B\), \& c. to the little circle \(a\); and then, while the progreffive nail defcribes the faid curve from \(A\) to \(E\), the pin will go once round the nail with regard to the center of
its path, and in fo doing, will defcribe the curve abcde. The former will be a true reprefentation
plate VII. of the Earth's path for one Lunation, and the latter of the Moon's for that time. Here we may fet afide the inequalities of the Moon's motion, and allo the Earth's moving round its common center of gravity and the Moon's: all which, if they were truly copied in this experiment, would not fenfibly alter the figure of the paths defcribed by the nail and pin, even though they fhould rub againft a plain upright furface all the way, and leave their tracts vifible upon it. And if the chariot was driven forward on fuch a convex piece of ground, fo as to turn the wheel feveral times round, the track of the pin in the nave would ftill be concave toward the center of the circular curve defcribed by the pin in the axle; as the Moon's path is always concave to the Sun in the center of the Earth's annual Orbit.
In this Diagram, the thickett curve-line \(A B C D E\); with the numeral figures fet to it, reprefents as much of the Earth's annual Orbit as it defcribes i. 32 days from weft to eaft; the little circles at \(a, b, c, d, e\), Hhew the Moon's Orbit in due proportion to the Earth's; and the fmalleft curve a bcdef reprefents the line of the Moon's path in the Heavens for 32 days, accounted from any parricular New Moon at \(a\). The Machine, Fig. 5 th, is for delineating the Moon's path, and fhall be defcribed, with the reft of my Aftronomical machinery, in the laft Chapter. The Sun is fuppofed to be in the center of the curve \(A 1234567 B, \& \mathrm{c}\). and the fmall-dotted circles upon it reprefent the Proortion Moon's Orbit, of which the radius is in the fame proportion to the Earth's path in this fcheme, that the radius of the Moon's Orbit in the Heavens Moon's Ore bears to the radius of the Earth's annual path round the Sun: that is, as 240,000 , to \(81,000,000^{*}\), or as 1 to \(337^{\circ}\).

BLATE VII.

Fig. Il.

When the Earth is at \(A\), the New Monn is at \(a\); and in the feven days that the Earth defcribes the curve 1234567 , the Moun in accompanying the Earth defcribes the curve \(a b\); and is in her firft quarter at \(b\) when the Earth is at \(B\). As the Earth defcribes the curve \(B 891011121314\), the Moon defcribes the curve \(b c\); and is at \(c\), oppofite to the Sun, when the Earth is at C. While the Earth defcribes the curve C 151617181920 2122 , the Moon defrribes the curve \(c d\); and is in her third Quarter at \(d\) when the Earth is at \(D\). And laftly, while the Earth defcribes the curve \(\nu_{2} 32425262728\) 29, the Moon defcribes the curve \(d e\); and is again in conjunction at \(e\) with the Sun when the Earth is at \(E\), between the 29th and 3oth day of the Moon's age, accounted by the numeral Figures from the New Moon at \(A\). In defcribing the curve \(a b c d e\), the Moon goes round the progreffive Earth as really as if The had kept in the dotted Circle \(A\), and the Earth continued immoveable in the center of that Circle.

The Moon's motion alwayscon cave loward the Sun.

How her Murion is" aliternately retarded and a ccelerated.

And thus we fee that, although the Moon goes round the Earth in a Circle, with refpect to the Earth's center, her real path in the Heavens is not very different in appearance from the Earth's path. To fhew that the Moon's path is concave to the Sun, even at the time of Change, it is carried on a little farther into a fecond Lunation, as to \(f\).
267. The Moon's abfolute motion from her Change to her firft Quarter, or from \(a\) to \(b\), is fo much nower than the Earth's, that fhe falls 240 thoufand miles (equal to the femi-diameter of her Orbit) behind the Earth at her firft Quarter in \(b\), when the Earth is at \(B\); that is, fhe falls back a fpace equal to her diftance from the Earth. From that time her motion is gradually accelerated to her Oppofition or Full at \(c\), and then fhe is come up as far as the Earth, having regained what fhe loft in her firft Quarter from a to \(b\). From the Full to the laft Quarter at \(d\) her motion continues
accelerated, fo as to be juft as far before the Earth at \(d\), as the was behind it at her firft Quarter in 3. But from \(d\) to \(e\) her motion is retarded fo, that the lofes as much with refpect to the Earth as is equal to her diftance from it, or to the femidiameter of her Orbit; and by that means the comes to \(e\), and is then in conjunction with the Sun as feen from the Earth at \(E\). Hence we find, that the Moon's abfolute Motion is flower than the Earth's from her third Quarter to her firft ; and fwifter than the Earth's from her firf Quarter to her third: her path being lefs curved than the Earth's in the former cafe, and more in the latter. Yet it is fill bent the fame way toward the Sun; for if we imagine the concavity of the Earth's Orbit to be meafured by the length of a perpendicular line \(C g\), let down from the Earth's place upon the Atraight line \(b g d\) at the Full of the Moon, and connecting the places of the Earth at the end of the Moon's firtt and third Quarters, that length will be about 640 thoufand miles; and the Moon when New only approaching nearer to the Sun by 240 thoufand miles than the Earth is, the length of the perpendicular let down from her place at that time upon the fame Araight line, and which fhews the concavity of that part of her path, will be about 400 thoufand miles.
263. The Moon's path being concave to the A difficulty Sun throughout, demonfrares that her gravity removed. toward the Sun, at her Conjunction, exceeds her gravity toward the Earth. And if we confider that the quantity of matter in the Sun is almoft 230 thoufand times as great as the quantity of matter in the Earth, and that the attraction of each body diminifhes as the fquare of the diftance from it increafes, we fhall foon find, that the point of equal attraction berween the Earth and the Sun, is about 70 thoufand miles nearer the Earth than the Moon is at her Change. It may then appear
\[
\mathrm{O}_{3}
\]

Plate furprifing that the Moon does not abandon the Earth when fhe is between it and the Sun, becaufe The is confiderably more attracted by the Sun than by the Earth at that time. But this difficulty vanifhes when we confider, that a common impulfe on any fyftem of bodies effects not thẻir relative motions; but that they will continue to attract, impel, or circulate round one another, in the fame manner as if there was no fuch impulfe. The Moon is fo near the Earth, and both of them fo far from the Sun, that the attractive power of the Sun may be confidered as equal on both: and therefore the Moon will continue to circulate round the Earth in the fame manner as if the Sun did not attract them at all. For bodies in the cabin of a fhip, may move round, or impel one another in the fame manner when the fhip is under fail, as when it is at reft; becaufe they are all equally affected by the common motion of the hip. If by any other caule, fuch as the near approach of a Comet, the Moon's diftance from the Earth fould happen to be fo much increafed, that the difference of their gravitating forces toward the Sun fhould exceed that of the Moon toward the Earth; in that cafe the Moon, when in conjunction, would abandon the Earth, and be either drawn into the Sun, or Comet, or circulate round about it.
269. The curves which Jupiter's Satellites defcribe, are all of different forts from the path defcribed by our Moon, although the Sarellites go round Jupiter as the Moon goes round the Earth.
Fig. nlu. Let \(A B C D E, \& c\). be as much of Jupiter's Orbic as he defcribes in 18 days from \(A\) to \(T\); and the curves \(a, b, c, d\), will be the paths of his four Moons going round him in his progreffive motion.

Now let us fuppofe all thefe Moons to fet out from a conjunction with the Sun, as feen from Jupiter
at \(A\); then, his firft or neareft Moon will be at \(a\), his fecond at \(b\), his third at \(c\), and his fourch at \(d\). At the end of 24 terreftrial Hours after this conjunction, Jupiter has moved to \(B\), his firf Moon or Satellite has defrribed the curve \(a \mathrm{I}\), his fecond the curve \(b \mathrm{I}\), his third \(c \mathrm{I}\), and his fourth \(d \mathrm{I}\). The next day, when Jupiter is at \(C\), his firft Satellite has defcribed the curve \(a 2\), from irs conjunction, his fecond the curve \(b_{2}\), his third the curve \(c 2\), and his fourth the curve \(d 2\), and fo on. The numeral Figures under the capital letters hew Jupiter's place in his path every day for 18 days, accounted from \(A\) to \(T\); and the like Figures fet to the paths of his Satellites, fhew where they are at the like times. The firt Satellites, almoft under \(C\), is ftationary at + , as feen from the Sun; and retrograde from + to 2: at 2 it appears Stationary again, and thence it moves forward until it has paffed 3 , and is twice ftationary, and once retrograde between 3 and 4. The path of this Satellite interfects icfelf every \(42 \frac{1}{2}\) hours, making fuch Loops as in the Diagram at 2.3.5.7.9.10. 12. 14. 16. 18, a little after every conjunction. The fecond Satellite \(b\), moving flower, barely croffes its path every 3 days 13 hours; as at 4.7 . I1. 14. I8, making only 5 Loops and as many conjunctions in the time that the firt makes ten. The third \(\mathrm{Sa}_{\mathrm{a}}\) tellite \(c\) moving ftill fower, and having defcribed the curve \(c\) I. 2.3.4.5.6.7, comes to an angle at 7 , in conjunction with the Sun, at the end of 7 days four hours; and fo goes on to defcribe fuch Fig. III. another curve 7.8.9.10.11.12.13.14, and is at 14 in its next conjunction. The fourch Satellite \(d\) is always progreffive, mak ing neither Loops nor Angles in the Heavens; but comes to its next conjunction at \(e\) berween the numeral figures 16 and 17 , or in 16 days 18 hours. In order to have a tolerably good figure of the paths of thefe \(\mathrm{Sa}_{\mathrm{a}}\) tellites, I took the follo wing method.

PLATE V1I. Fig. 1 V.

How to delineate the paths of Jupiter's Moons.

Having drawn their Orbits on a Card, in proportion to their relative diftances from Jupiter, I meafured the radius of the Orbit of the fourth Satellite, which was an inch and \(\frac{14}{108}\) parts of an inch; then multiplied this by 424 for the radius of Jupiter's Orbit, becaufe Jupiter is 424 times as far from the Sun's center as his fourth Satellite is from his center; and the product thence arifing was \(483{ }^{\frac{3}{5} 5}\) inches. Then taking a fmall cord of this length, and fixing one end of it to the floor of a long room by a nail, with a black-lead pencil at the other end I drew the curve \(A B C D\), \&c. and fet off a degree and half thereon, from \(A\) to \(T\); becaufe Jupiter moves only fo much, while his outermolt Satellite goes once round him, and fomewhat more; fo that this fmall portion of fo large a circle differs but very little from a fraight line. This done, I divided the fpace \(A T\) into is equal parts, as \(A B, B C, \& c\). for the daily progrefs of Jupirer; and each part into 24 for his hourly progrefs. The Orbit of each Satellite was alfo divided into as many equal parts as the Satellite is hours in finifhing its fynodical period round Jupiter. Then drawing a right line chrough the center of the Card, as a diameter to all the four Orbits upon it, I put the Card upon the line of Jupiter's inotion, and transferred it to every horary divifion thereon, keeping al ways the fame diameterline on the line of Jupiter's path; and running a pin through each horary divifion in the Orbit of each Satellite as the Card was gradually transferred along the line \(A B C D\), \&xc. of Jupiter's motion, I marked points for every hour through the Card for the curves defcribed by the Satellites, as the primary Planet in the center of the Card was carried forward on the line; and fo finithed the Figure, by drawing the lines of each Satellite's motion through thofe (ahmoft innumerable) points: by which means, this is, perhaps, as true a Figure of the paths of thefe Satellites as can be defired.

And in the fame manner might thofe of Saturn's Satellites be delineated.
270. It appears by the fcheme, that the three firt Satellites come almoft into the fame line of pofition every fevench day; the firf being only a little behind with the fecond, and the fecond behind with the third. But the period of the fourth Satellite is fo incommenfurate to the periods of the other three, that it cannot be gueffed at by the diagram when it would fall again into a line of conjunction with them between Jupiter and the Sun. And no wonder; for fuppofing them all to have been once in conjunction, it will require \(3,087,043,493,260\) years to bring them in conjunction again. See § 73 .
271. In Fig. 4th, we have the proportions of Fig. Iv. the Orbits of Saturn's five Satellites, and of Jupiter's four, to one another, to our Moon's Orbit, and to the Difc of the Sun. \(S\) is the Sun; \(M_{m}\) the Moon's Orbit (the Earth fuppofed to be at \(E\)); 7 Jupiter; 1. 2. 3. 4, the Orbits of his four Moons or Satellites; Sat. Saturn; and I. 2.3.4.5, the Orbits of his five Moons. Hence it appears, that the Sun would much more than fill the whole Orbit of the Moon; for the Sun's diameter is 763,000 miles, and the diameter of the Moon's Orbit only 480,000 . In proportion to all thefe Orbits of the Satellites, the radius of Saturn's annual Orbit would be \(21 \frac{1}{4}\) yards, of Jupiter's Orbit \(1 \frac{2}{3}\), and of the Earth's \(2 \frac{1}{4}\), taking them in round numbers.
\(2 / 2\). The annexed Table fhews at once what proportion the Orbits, Revolucions, and Velocities of all the Satellites bear to thofe of their primary Planets, and what fort of curves the feveral Satellites defcribe. For thofe Satellites, whofe velocities round their Primaries are greater than the velocities of their Primaries in open rpace, make Loops at their conjunctions, \(\$ 269\); appearing retrograde as feen from the Sun while they defcribe
the inferior parts of their Orbits, and direct while they defcribe the fuperior. This is the cafe with Jupiter's firft and fecond Satellites, and with Saturn's firft. But thofe Satellites, whofe velocities are lefs than the velocities of their primary Planets, move direct in their whole circumvolutions; which is the cafe of the third and fourth Satellites of Jupiter, and of the fecond, third, fourth, and fifth Satellites of Saturn, as well as of our Satellite the Moon: but the Moon is the only Satellite whofe motion is always concave to the Sun. There is a
\begin{tabular}{|c|c|c|c|}
\hline & Propartion of the Radius of the Planet's Urbit to the Radius of the Orbit of each Satellite. & Proportion of the Time of the Planet's Revolution to the Revolution of each Satellite. & Proportion of the Velocity of each Saeellite to the Velocity of its primary Planet. \\
\hline & As 5322 to 1 & As 5738 to 1 & As 5738 to 5322 \\
\hline & 4155 & 3912 & 39124155 \\
\hline & 2954 & 2347 & 23472954 \\
\hline & 1295 & 674 & 6741295 \\
\hline & 432 & 134 & 134 432 \\
\hline \[
\begin{array}{ll}
0 & 1 \\
- & 2
\end{array}
\] & \[
\text { As } \begin{array}{llll}
1851 & \text { to } & 1 \\
1165 & 1
\end{array}
\] & \[
\text { As } \begin{array}{cc}
2445 \\
& 1219
\end{array}
\] & As \(24+5\) to 1351 \\
\hline 或 & 731 & 604 & 604 731 \\
\hline & 424 & \(25^{8}\) & 258 424 \\
\hline The & As 337\% \({ }^{\frac{1}{2} \text { to } 11}\) & As \(12{ }_{5}^{1}\) to 1 & As \(12 \frac{1}{3}\) to \(337 \frac{1}{2}\) \\
\hline
\end{tabular}
table of this Sort in De la Caille's Aftronomy, but it is very different from the above, which I have computed from our Englifhaccounts of the periods and diftances of thefe Planets and Satellites.

\section*{C H A P. XVI.}

The Phenomena of the Harveft-Moon explained by a common Globe. The Years in which the HarveftMoons are leaft and moot beneficial from 1751 to 1861. The long Duration of Moon-light at the Poles in Winter.

273. \({ }^{\mathrm{T}}\)T is generally believed that the Moon rifes about 50 minutes later every day than on the preceding; but this is true only with regard to places on the Equator. In places of confiderable Latitude there is a remark able difference, efpecially in the harveft-time, with which farmers were better acquainted than Aftronomers till of late; and gratefully afcribed the early rifing of the Full Moon at that time of the year to the goodnefs of God, not doubring that he had ordered it fo on purpofe to give them an immediate fupply of moon-light to give them an immediate fupply of moon-light ing the fruits of the Earth.
In this inftance of the Harveft-Moon, as in many others difcoverable by Aftronomy, the wifdom and beneficence of the Drity is confpicuous, who really ordered the courfe of the Moon fo, as to beftow more or lefs light on all parts of the Earth as their feveral circumftances and feafons render it more or lefs ferviceable. About the Equator, where there is no variety of feafons, and the weather changes feldom, and at fated rimes, Moon-li, ht is not neceffary for gathering in the produce of the ground; and there the Moon rifes abour o minutes later every day or night than on the furmer. In confiderable diflances from the E quatur, where the weather and fealons are more uncertam, the autumnal Full Moons rife very foon after fun-

\section*{No Harvelt Moon at the Equator.}

But remarkable according to the diftances of places from it.

The reafon of this.
fet for feveral evenings together. At the polar circles, where the mild featon is of very fhort duration, the autumnal Full Moon rifes at fun-fet from the firt to the third quarter. And at the Poles, where the Sun is for half a year abfent, the winter Full Moons fhine conftantly without fetting from the firft to the third quarter.

It is foon faid that all thefe Phenomena are owing to the different Angles made by the Horizon and different parts of the Moon's Orbit; and that the Moon can be full but once or twice in a year in thofe parts of her Orbit which rife with the lealt Angles. But to explain this fubject intellıgibly, we mult dwell much longer upon it.
274. The * plane of the Equinoctial is perpendicular to the Earth's Axis; and therefore, as the Earth turns round its Axis, all parts of the Equinoctial make equal angles with the Horizon both at rifing and fetting; fo that equal portions of it always rife or fet in equal times. Confequently, if the Moon's motion were equable, and in the Equinoctial, at the rate of 12 degrees 11 min . from the Sun every day, as it is in her Orbit, the would rife and fet 50 minutes later every day than on the preceding ; for 12 deg . I1 min . of the Equinoctial rife or fet in 50 minutes of time in all Latitudes.
275. But the Mopn's motion is fo nearly in the Ecliptic, that we may confider her at prefent as moving in it. Now the different parts of the Ecliptic, on account of its obliquity to the Earth's Axis, make very different angles with the Horizon as they rife or fet. Thofe parts or Signs which rife with the fmalleft angles fet with the greateft, and vice verfa. In equal times, whenever this Angle is lealt, a greater portion of the Ecliptic rifes than when the Angle is larger; as may be feen by elevating the pole of a Globe to any con-
* If a Globe be cut quite through upon any Circle, the flat furface where it is fo divided is the plane of that Circle.
fiderable Latitude, and then turning it round its Axis. Confequently, when the Moon is in thofe Signs which rife or fet with the fimalleft Angles, fhe rifes or fets with the leaft difference of time; and with the greateft difference in thofe Signs Fig. IIf. which rife or fet with the greateft Angles.

But, becaufe all who read this Treatife may, not be provided with Globes, though in this cafe it is requifite to know how to ufe them, we fhall fubftitute the Figure of a globe; in which FUP is the Axis, of \(T^{\prime} R\) the Tropic of Cancer, \(L t\) 以 the Tropic of Capricorn, so \(E U\) bo the Ecliptic touching both the Tropict, which are 47 degrees from each other, and \(A B\) the Horizon. The Equator, being in the middle between the Tropics, is cut by the Ecliptic in two oppofite points, which are the beginnings of \(r\) Aries and \(\bumpeq\) Libra. \(K\) is the Hour-circle with its Index, \(F\) the North Pole of the Globe elevated to a confiderable Latitude, fuppofe 40 degrees above the Horizon; and \(P\) the South Pole depreffed as much below it. Fig. IIr. Becaufe of the oblique pofition of the Sphere in this Latitude, the Ecliptic has the high elevation \(N\) os above the Horizon, making the Angle \(N U_{s}\) of \(73 \frac{1}{2}\) degrees with it when \(\sigma\) Cancer is on the Meridian, at which time \(\bumpeq\) Libra rifes in

The different Angles made by the Ecliptic and Horizon. the Eaft. But let the Globe be turned half round its Axis, till ho Capricorn comes to the Meridian and \(r\) A ries rifes in the Eaft, and then the Eclip. tic will have the low elevation NL above the Horizon, making only an Angle \(N U L\) of \(26 \frac{2}{2}\) degrees with it; which is 47 degrees lefs than the former Angle, equal to the diftance between the Tropics.
276. In northern Latitudes, the fmalleft Angle made by the Ecliptic and Horizon is when Aries Leaff and rifes, at which time Libra fees; the greatef when Libra rifes, at which time Aries fers. From the sifing of Aries to the rifing of Libra (which is
twelve * Sydereal hours) the angle increafes; and from the rifing of Libra to the rifing of Aries it decreafes in the fame proportion. By this article and the preceding it appears that the Ecliptic rifes fafteft about Aries, and floweft about Libra.

Refult of the quantity of this Angle at London.
277. On the parallel of London, as much of the Ecliptic rifes about Pifces and Aries in two hours as the Moon goes through in fix days: and therefore while the Moon is in thefe Signs, fhe differs but two hours in rifing for fix days together; that is, about 20 minutes later every day or night than on the preceding, at a mean rate. But in fourteen days afterward, the Moon comes to Virgo and Libra, which are the oppofite Signs to Pifces and Aries; and then fhe differs almoft four times as much iri rifing; namely, one hour and about fifteen minutes laterevery day or night than the former, while fhe is in there Signs. The annexed Table fhews the daily mean difference of the Moon's rifing and
 fetting on the Parallel of Loirdon, for 28 days;
- The Ecliptic, together with the fixed Stare, make \({ }_{3} 66 \frac{1}{7}\) apparent diurnal revolutions abous the Earth in a year: the Sun only \(365^{\prime}\). Therefore the Stars guin 3 minutes 56 feconds upon the Sun every Day; fo that a Sydereal oay contains only 23 hours 56 minutes of mean Solar time; and a natural or Solar day 24 hours. Hence 12 Sydereal hours are one minute 58 feconds fhorter than 12 Solar hours.
in which time the Moon finifhes her period plate round the Ecliptic, and gets 9 degrees into the fame Sign from the beginning of which the fet out. So it appears by the Table, that when the Moon is in \(\bar{y}\) and \(\bumpeq\) fhe rifes an hour and a quarter later every day than fhe rofe on the former; and differs only \(28,24,20,18\), or 17 minutes in fetting. But, when fhe comes to \(x\) and \(r\), fhe is only 20 or 17 minutes later in rifing; and an hour and a quarter later in fetting.
278. All thefe things will be made plain by putting fimall patches on the Ecliptic of a Globe, as far from one another as the Moon moves from any point of the celeftial Ecliptic in 24 hours, which at a mean rate is * \(13 \frac{1}{6}\) degrees; and then in turning the Globe round, obferve the rifing and fetting of the patches in the Horizon, as the Index points out the different times in the hour-circle. A few of thefe patches are reprefented by dots at 0 I \(23, \& c\). on the Ecliptic, which has the pofi- Fig. iu. tion LUI when Aries rifes in the Eaft; and by the dots \(\mathrm{O}_{1} \mathrm{I}_{3}\) 3, \&c. when Libra rifes in the Eaft, at which time the Ecliptic has the pofition \(E U_{r s}\) : making an angle of 62 degrees with the Horizon in the latter cafe, and an angle of no more than 15 degrees with it in the former; fuppoling the Globe rectified to the Latitude of London.
279. Having rectified the Globe, turn it until the patch at 0 , about the beginning of \(; x\) Pifces in the half LUI of the Ecliptic, comes to the Eaftern fide of the Horizon; and then keeping the ball fteadý, fet the hour-index to XII, becaufe that hour may perhaps be more eafily remembered than any other. Then turn the Globe round Weft-

\footnotetext{
* The Sun advances almoft a degree in the Ecliptic in 24. hours, the fame way that the Moon moves; and therefore the Moon by advancing \(13^{\frac{1}{6}}\) degrees in that time goes litile more than 12 degrees farther from the Sun than the was on the day
before.
}
ward; and in that time, fuppofe the patch o to have moved thence to 1 , i \(3 \frac{1}{8}\) degrees, while the Earth turns once round its Axis, and you will fee that a rifes only about 20 minutes later than o did on the day before. Turn the Globe round again, and in that time fuppofe the fame patch to have moved from I to 2 ; and it will rife only 20 minutes later by the hour-index than it did at I on the day or turn before. At the end of the next turn fuppofe the patch to have gone from 2 to 3 at \(U\), and it will rife 20 minutes later than it did at 2 . And fo on for fix turns, in which time there will ficarce be two hours difference; nor would there have been fo much, if the 6 degrees of the Sun's motion in that time had been allowed for. At the firt turn the patch rifes Sourh of the Eaft, at the middle turn due Eaft, and at the lalt turn North of the Eaft. But thefe parches will be 9 hours in fetting on the Weftern fide of the Horizon, which fhews that the Moon's fetting will be fo much retarded in that week in which fhe moves through thefe two Signs. The caufe of this difference is evident; for Pifces and Aries make only an Angle of 15 degrees with the Horizon when they rife; bur they make an Angle of 62 degrees with it when they fet. As the Signs Taurus, Gemini, Cancer, Leo, Virgo, and Libra, rife fucceflively, the Angle increafes gradually which they make with the Horizon, and decreafes in the fame proportion as they fet. And for that reaton, the Moon differs gradually more in the time of her rifing every day while the is in thefe Signs, and lefs in her fetting: after which, through the other fix Signs, viz. Scorpio, Sagittary, Capricorn, Aquarius, Pifces, and Aries, the rifing difference becomes lefs every day, until it be at the leaft of all, namely, in Pifces and Aries.
280. The Moon goes round the Ecliptic in 27 days 8 hours: but not from Change to Change in lefs than 29 days 12 hours: fo that the is in Pifces
and Aries at leaft once in every Lunation, and in fome Lunations twice.
281. If the Earth had no annual motion, the Sun would never appear to hift his place in the Ecliptic. And then every New Moon would fall in the fame fign and degree of the Ecliptic, and

Why the Moon is al ways Full in different Signt. every Full Moon in the oppofite; for the Moon would go precifely round the Ecliptic from Change to Change. So that if the Moon were once Full in Pifces or Aries, fhe would always be Full when the came round to the fame Sign and Degree again. And as the Full Moon rifes at Sun-fet (becaufe when any point of the Ecliptic fets, the oppofite point rifes) fhe would conftantly rife within two hours of Sun-fet, on the parallel of London, during the week in which fhe were Full. But in the time that the Moon goes round the Ecliptic from any conjunction or oppofition, the Earth goes almoft a Sign forward: and therefore the Sun will feem to go as far forward in that time, namely, \(27 \frac{1}{2}\) degrees; fo that the Moon muft go \(27 \frac{1}{2}\) degrees more than round, and as much farther as the Sun advances in that interval, which is \(2 \mathrm{~T}^{\prime}\) ' degrees, before fhe can be in conjunction with, or oppofite to the Sun again. Hence it is evident, that there can be but one conjunction or oppofition of the Sun and Moon in a year in any particular part of the Ecliptic. This may be familiarly exemplified by the hour and minute-hands of a watch, which are never in conjunction or oppofition in that part of the dial-plate where they were fo

Her periodical and fynodical Revolution exemplified. laft before. And indeed if we compare the twelve hours on the dial-plate to the twelve figns of the Ecliptic, the hour-hand to the Sun, and the minute-hand to the Moon, we fhall have a tolera. bly near refemblance in miniature to the motions of our great celeftial Luminaries. The only difference is, that while the Sun goes once round the Ecliptic, the Moon makes \(12 \frac{1}{3}\) conjunctions with him: but while the hour-hand goes round the
dial-plate, the minute-hand makes only ir conjunctions with it; becaufe the minute hand moves nower in refpect to the hour-hand than the Moon does with regard to the Sun.

The Hirveft and Hunter's Moon.

Why the Moon's reqular rifing is never perceived hut in Harveft.
282. As the Moon can never be full but when The is oppofite to the Sun, and the Sun is never in Virgo and Libra but in our autumnal months, it is plain that the Moon is never full in the oppofite Signs, Pifces and Aries, but in thele two months. And therefore we can have only two Full Moons in the year, which rife fo near the time of Sun-fet for a week together, as abovementioned. The former of thefe is called the Harvef- Moon, and the latter the Hunter's Moon.
283. Here it will probably be afked, why we never obferve this remarkable rifing of the Moon but in harveft, feeing fhe is in Pilces and Aries twelve times in the year befides; and muft then rife with as little difference of time as in harveft? The anfwer is plain: for in winter thefe Signs rife at noon; and being then only a Quarter of a Circle diftant from the Sun, the Moon in them is in her firt Quarter: but when the Sun is above the Horizon, the Moon's rifing is neither regarded nor perceived. In fpring thefe Signs rife with the Sun, becaufe he is then in them; and as the Moon changeth in them at that time of the year, fhe is quite invifible. In fummer they rife about midnight, and the Sun being then three Signs, or a Quarter of a Circle before them, the Moon is in them about her third Quarter: when rifing fo late, and giving but very little light, her riling paffes onobferved. And in autumn thefe Signs, being oppofite to the Sun, rife when he fets, with the Moon in Oppofition, or at the Full, which makes her rifing very confpicuous.
284. At the Equator, the North and South Poles lie in the Horizon; and therefore the Ecliptic makes the fame Angle fouthward with the Ho-
rizon when Aries rifes, as it does northward when Libra rifes. Confequently, as the Moon at all the fore-mentioned parches rifes and fets nearly at equal Angles with the Horizon all the year round, and about 50 minutes later every day or night than on the preceding, there can be no particular Har-veft-Moon at the Equator.
285. The farther that any place is from the Equator, if it be not beyond the Polar Circle, the Angle gradually diminifhes which the Ecliptic and Horizon make when Pifces and Aries rife: and therefore when the Moon is in thefe Signs fhe rifes with a nearly proportionable difference later every day than on the former; and is for that reafon the more remarkable about the Full, until we come to the Polar Circles, or 66 degrees from the Equator; in which Latitude the Ecliptic and Horizon become coincident every day for a moment, at the fame fydereal hour (or 3 minutes 56 feconds fooner every day than the former), and the very next moment one half of the Ecliptic containing Capricorn, Aquarius, Pifces, Aries, Taurus, and Gemini, rifes, and the oppofite half fets. Therefore, while the Moon is going from the beginning of Capricorn to the beginning of Cancer, which is almoft 14 days, the rifes at the fame fydereal hour ; and in autumn juft at Sun-fer, becaufe all the half of the Ecliptic, in which the Sun is at that time, fets at the fame fydereal hour, and the oppofite half rifes; that is, 3 minutes 56 feconds, of mean folar time, fooner every day than on the day before. So while the Moon is going from Capricorn to Cancer, fhe rifes earlier every day than on the preceding; contrary to what fhe does at all places between the Polar Circles. But during the above fourteen days, the Moon is 24 fydereal hours later in fetting; for the fix Signs which rife all at once on the eaftern fide of the Horizon are 24 hours in fetting on the weftern fide of it; as any one may fee by making chalk-marks
at the beginning of Capricorn and of Cancer, and then, having elevated the Pole \(66 \frac{x}{2}\) degrees, turn the Globe flowly round its Axis, and obferve the rifing and fetting of the Ecliptic. As the beginning of Aries is equally diftant from the beginning of Cancer and of Capricorn, it is in the middle of that half of the Ecliptic which rifes all at once. And when the Sun is at the beginning of Libra, he is in the middle of the other half. Therefore, when the Sun is in Libra, and the Moon in Capricorn, the Moon is a Quarter of a Circle before the Sun; oppofite to him, and confequently full in Aries, and a Quarter of a Circle behind him, when in Cancer. But when Libra rifes, Aries fets, and all that half of the Ecliptic of which Aries is the middle, and therefore, at that time of the year, the Moon rifes at Sun-fet from her firt to her third Quarter.

The Har-Teft-Moons regular on both fides of the Equator.
286. In northern Latitudes, the autumnal Full Moons are in Pifces and Aries; and the vernal Full Moons in Virgo and Libra: in fouthern Latitudes, juft the reverfe, becaufe the feafons are contrary. But Virgo and Libra rife at as fmall Angles with the Horizon in fouthern Latitudes, as Pifces and Aries do in the northern; and therefore the Harvelt-Moons are juft as regular on one fide of the Equator as on the other.
287. As thefe Signs, which rife with the leaft Angles, fet with the greateft, the vernal Full Moons differ as much in their times of rifing every night, as the autumnal Full Moons differ in their times of fetting; and fet with as little difference as the autumnal Full Moons rife: the one being in all cafes the reverfe of the other.
288. Hitherto, for the fake of plainnefs, we have fuppofed the Moon to move in the Ecliptic, from which the Sun never deviates. But the Orbit in which the Moon really moves is different from the Ecliptic: one half being elevated \(5 \frac{1}{7}\) degrees above it, and the other half as much depreffed
preffed below it. The Moon's Orbit therefore interfects the Ecliptic in two points diametrically oppofite to each other; and thefe interfections are called the Moon's Nodes. So the Moon can never be in the Ecliptic but when the is in either of her

TheMoon's Nodes. Nodes, which is at leaft twice in every courfe from Change to Change, and fometimes thrice. For, as the Moon goes almoft a whole Sign more than round her Orbit from Change to Change; if Phe paffes by either Node about the time of Change, the will pals by the other in about fourteen days after, and come round to the former Node two days again before the next Change. That Node from which the Moon begins to afcend north ward, or above the Ecliptic, in northern latitudes, is called the Afcending Node; and the other the Descending Node, becaufe the Moon, when the paffes by it, defcends below the Ecliptic fouthward.
289. The Moon's oblique motion with regard to the Ecliptic caufes fome difference in the times of her rifing and fetting from what is already mentioned. For when fhe is northward of the Ecliptic, fhe rifes fooner and fets later than if the moved in the Ecliptic; and when the is fouthward of the Ecliptic, the rifes later and fets fooner. This difference is variable, even in the fame Signs, becaufe the Nodes fhift backward about \(19^{\frac{2}{3}}\) degrees in the Ecliptic every year; and fo go round it contrary to the order of Signs in 18 years 225 days.
290. When the afcending Node is in Aries, the fouthern half of the Moon's Urbit makes an Angle of \(5 \frac{7}{3}\) degrees lefs with the Horizon than the Ecliptic does, when Aries rifes in northern Latitudes: for which reafon the Moon rifes with lefs difference of time while the is in Pifces and Aries, than the would do if the kept in the Ecliptic. But in 9 years and 112 days afterward, the Defcending Node comes to Aries; and then the Moon's Orbit makes an Angle \(5_{\frac{1}{3}}^{3}\) degrees greater with the Horizon when Aries rifes, than the

Ecliptic does at that time; which caufes the Moon to rife with greater difference of time in Pifces and Aries than if fhe moved in the Ecliptic.
291. To be a little more particular; when the Afcending Node is in Aries, the Angle is only \(9^{\frac{2}{3}}\) degrees on the parallel of London when Aries rifes. But when the Defcending Node comes to Aries, the Angle is \(20 \frac{1}{5}\) degrees; this occafions as great a difference of the Moon's rifing in the fame Signs every 9 years, as chere would be on two parallels \(10_{\frac{2}{3}}^{2}\) degrees from one another, if the Moon's courfe were in the Ecliptic. The following. Table fhews how much the Obliquity of the Moon's Orbit affects her rifing and fetting on the parallel of London, from the 12 th to the 18 th day of her age; fuppofing her to be full at the autumnal Equinox: and then, either in the Afcending Node, higheft part of her Orbit, Defcending Node, or loweft part of her Orbit. M fignifies morning, \(A\) afternoon: and the line at the foot of the Table fhews a week's difference in rifing and fetting.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 5 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 000
\end{aligned}
\]} & \multicolumn{4}{|l|}{Full in her Al-tin the bighell cending Node. pt. ofher Orbit.} & \multicolumn{2}{|l|}{Full in her Derending Node.} & \multicolumn{2}{|l|}{In the lowe th pr. of her Orbit.} \\
\hline & \[
\mathrm{H}
\] & & & & & & & \\
\hline & & & & & & & & \\
\hline 13 & & 425 & & & & 420 & & \\
\hline 14 & & 530 & & & 45 & & & \\
\hline & & & & & & 0 & & \\
\hline 16 & 620 & \(8 \quad 15\) & & & & 8 8 & & \\
\hline & & & & & & & & 915 \\
\hline 18 & 6 & , 3 & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

This Table was not computed, but only eftimated as near as could be done from a common Globe, on which the Moon's Orbit was delineated with a black-lead pencil. It may at firft fight ap-
pear erroneous; fince as we have fuppofed the Moon to be full in either Node at the autumnal Equinox, fhe ought by the Table to rife juft at fix o'clock, or at Sun-fet, on the 15 th day of her age; being in the Ecliptic at that cime. But it mult be confidered, that the Moon is only \(14 \frac{3}{4}\) days old when the is Full; and therefore in both cafes the is a little paft the Node on the 15 ch day, being above it at one time, and below it at the other.
292. As there is a compleat revolution of the Nodes in \(18 \frac{2}{3}\) years, there mult be a regular period of all the varieties which can happen in the rifing and fetting of the Moon during that time. But this Shifting of the Nodes never affects the Moon's

The period of the Har -velt-Moon. rifing fo much, even in her quickeft defcending Latitude, as not to allow us fill the benefit of her rifing nearer the time of Sun-fet for a few days together about the Full in Harveft, than when the is Full at any other time of the year. The following Table hews in what years the Harveft-Moons are lealt beneficial as to the times of their rifing, and in what years moft, from 1751 to 186 I . The column of years under the letter \(L\) are thofe in which the Harveft-Moons are leaft of all beneficial, becaufe they \(\mathrm{f}_{\mathrm{a}}\) ll about the Defcending Node: and thofe under \(M\) are the moft of all beneficial, becaufe they fall about the Afcending Node. In all the columns from \(N\) to \(S\) the Harveft-Moons defcend gradually in the Lunar Orbit, and rife to lefs heights above the Horizon. From \(S\) to \(N\) they afcend in the fame proportion, and rife to greater heights above the Horizon. In both the Columns under \(S\), the Harveft-Moons are in the loweit pare of the Moon's Orbit, that is, fartheft South of the Ecliptic; and therefore ftay horteft of all above the Horizon: in the Columns under \(N\), jult the re-. verfe. And in both cafes, their rifings, though not at the fame times, are nearly the fame with reyard to difference of time, as if the Moon's Orbit were coincident with the Ecliptic.

293. At the Polar Circles, when the Sun touches the Summer Tropic, he continues 24 hours above the Horizon; and 24 hours below it when he touches the Winter Tropic. For the fame reafon the Full Moon neither rifes in Summer, nor fets in Winter, confidering her as moving in the Ecliptic. For the Winter Full Moon being as high in the Ecliptic as the Summer Sun, muft therefore continue as long above the Horizon; and the Summer Full Moon being as low in the Ecliptic as the Winter Sun, can no more rife than he does. But thefe are only the two Full Moons which hap. pen about the Tropics, for all the others rife and fet., In Summer the Full Moons are low, and their ftay is fhort above the Horizon, when she nights are fhort, and we have lealt occafion for Moon-light : in Winter they go high, and ftay long above the Horizon, when the nights are long, and we want the greatelt quantity of Moon-light.

The long continuance, of Moon. lipht at the Poles,
\(29+\). At the Poles, one half of the Ecliptic never fets, and the other half never rifes: and therefore, as the Sun is always half a year in defcribing one half of the Ecliptic, and as long in going through the other half, it is natural to ima-

gine that the Sun continues half a year together above the Horizon of each Pole in its turn, and as long below it; rifing to one Pole when he fets to the other. This would be exactly the cafe if there were no refraction: but by the Atmofphere's refracting the Sun's rays, he becomes vifible fome days fooner, \(\$ 183\), and continues fome days longer in fight than he would otherwife do: fo that he appears above the Horizon of either Pole before he has got below the Horizon of the other. And, as he never goes more than \(23 \frac{1}{2}\) degrees below the Horizon of the Poles, they have very little dark night, it being twilight there, as well as at all other places, till the Sun be 18 degrees below the Horizon, §777. The Full Moon being always oppofite to the Sun, can never be feen while the Sun is above the Horizon, except when the Moon falls in the northern half of her Orbit; for whenever any point of the Ecliptic rifes, the oppofite point fets. Therefore, as the Sun is above the Horizon of the north Pole from the 2oth of March till the 23 d of September, it is plain that the Moon, when Full, being oppofite to the Sun, mult be below the Horizon during that half of the year. But when the Sun is in the fouthern half of the Ecliptic, he never rifes to the north Pole, during which half of the year, every Full Moon happens in fome part of the northern half of the Ecliptic, which never lets. Confequently, as the polar Inhabitants never fee the Full Moon in Summer, they have her always in the Winter, before, at, and after the Full, fhining for 14 of our days and nights. And when the Sun is at his greatef depreftion below the Horizon, being then in Capricorn, the Moon is at her Firft Quarter in Aries, Full in Cancer, and at her Third Quarter in Libra. And as the beginning of Aries is the rifing point of the Ecliptic, Cancer the higheft, and Libra the fetting point, the Moon rifes at her Firft Quarter in Aries, is moft elevated above the

\section*{Plate V11,}

Horizon, and Full in Cancer, and fets at the beginning of Libra in her Third Quarter, having continued vifible for 14 diurnal rotations of the Earth. Thus the Poits are fupplied one half of the winter-time with conftant Moon-light in the Sun's abfence; and only lofe fight of the Moon from her Third to her Firft Qularter, while fhe gives but very little light; and could be but of litrle, and fometimes of no fervice to them. A Fig. v. bare view of the Figure will make this plain; in which let \(\mathcal{S}\) be the Sun, e the Earth in Summer, when its north Pole \(n\) inclines toward the Sun, and \(E\) the Earth in Winter, when its north Pole declines from him. SEN and NWS is the Horizon of the north Pole, which is coincident with the Equator; and, in both thefe pofitions of the Earch, \(r \simeq \bumpeq\) vs is the Moon's Orbir, in which the goes round the Eiarth, according to the order of the lecters \(a b c d\), \(A B C D\). When the Moon is at \(a\), fhe is in her Third Quarter to the Earth at \(e\), and juft rifing to the north Pole \(n\); at \(b\) hee changes, and is at the greatelt height above the Horizon, as the Sun likewife is; at \(c\) the is in her Firft Quarter, ferting below the Horizon; and is loweft of all under it at \(d\), when oppofite to the Sun, and her enlightened Side toward the Earth. But then the is full in view to the routh Pole \(p\); which is as much turned from the Sun as the north Pole inclines toward him. Thus in our Summer, the Moon is above the Horizon of the north Pole while fhe defcribes the northern half of the Ecliptic \(r\) os \(\bumpeq\), or from her Third Quarter to her Firt; and below the Horizon during her progrefs through the fouthern half \(\bumpeq w^{3} r\); higheft at the Change, moft depreffed at the Full. But in winter, when the Earch is at \(E\), and its north Pole declines from the Sun, the New Moon ar \(D\) is at her greatell deprefiion below the Horizon NIVS, and the Full Moon at \(B\) at her greateft height above it; rifing at her Firit Quarter \(A\),

and keeping above the Horizon till fhe comes to her third Quarter \(C\). At a mean flate fle is \(23^{\frac{\pi}{2}}\) degrees above the Horizon at \(B\) and \(b\), and as much below it at \(D\) and \(d\), equal to the inclination of the Earch's Axis \(F . S\) ฐo or \(S\) is are, as it were, a ray of light proceeding from the Sun to the Earth ; and fhews that when the Earth is at \(e\), the Sun is above the Horizon, vertical to the Tropic of Cancer; and when the Earth is at \(E\), he is below the Horizon, vertical to the Tropic of Capricorn.

\section*{C H A P. XVII.}

\section*{Of the Ebbing and Flowing of the Sea.}
295. HE caufe of the Tides was difcovered by Kepler, who, in his IntroduCiion to the Pbyjics of the Heavens, thus explains it: "The Orb of the attracting power, which is in the Moon, is extended as far as the Earth; and draws the waters under the Torrid Zone, acting upon places where it is vertical, infenfibly on confined feas and bays, but fenfibly on the ocean, whofe beds are large, and the waters have the liberty of reciprocation; that is, of rifing and falling." And in the joth page of his Lunar Aftronomy - "But the caufe of the Tides of the Sea appears to be the bodies of the Sun and Moon drawing the waters of the Sea." This hint being given, the immortal Sir Isaac Newton improved it, and wrote fo amply on the fubject, as to make the Theory of the Tides in a Manner quite his own; by difcovering the caufe of their rifing on the fide of the Earth oppofite to the Moon. For Kepler believed, that the prefence of the Moon occafioned an impulfe which caufed another in her abfence.
296. It has been already fhewn, \(\S 106\), that the power of gravity diminifhes as the fquare of the diftance increafes; and therefore the waters at \(Z\),

\section*{The caufe of} the Tides diconvered by \(\mathrm{K}_{\mathrm{EP}}\). xER.

Their Theory improved by Sir IsAAC Newton.

Explained onthe Newronian prasciples.

PLATE 1X.

Fig. I.
on the fide of the Earth \(A B C D E F G H\) next the Moon \(M\), are more attracted than the central parts of the Earth \(O\) by the Moon, and the central parts are more attracted by her than the waters on the oppofite fide of the Earth at \(n\) : and therefore the diftance between the Earth's center and the waters on its furface under and oppofite to the Moon will be increafed. For, let there be three bodies at \(H, O\), and \(D\) : if they are all equally atrracted by the body \(M\), they will all move equally faft toward it, their mutual diftances from each other continuing the fame. If the attraction of \(M\) is unequal, then that body which is moft ftrongly attracted will move falteft, and this will increafe its diftance from the orher body. Therefore, by the law of gravitation, \(M\) will attract \(H\) more ftrongly than it does \(O\), by which the diftance between \(H\) and \(O\) will be increafed: and a Spectator on \(O\) will perceive \(H\) rifing higher toward \(Z\). In like manner \(O\) being more ftrongly attracted than \(D\), it will move farther toward \(M\) than \(D\) does: confequently, the diftance between \(O\) and \(D\) will be increaled; and a fpectator on \(O\), not perceiving his own motion, will fee \(D\) receding farther from him roward \(n\) : all effects and appearances being the fame, whether \(D\) recedes from \(O\), or \(O\) from \(D\).
297. Suppofe now there is a number of bodies, as \(A, B, C, D, E, F, G, H\), placed round \(O\), fo as to form a flexible or fluid ring: then, as the whole is attracted towards \(M\), the parts at \(H\) and \(D\) will have their diftance from \(O\) increafed; while the parts at \(B\) and \(F\), being nearly at the fame diftance from \(M\) as \(O\) is, thefe parts will nut recede from one another; but rather, by the oblique attraction of \(M\), they will approach nearer to \(O\). Hence, the fluid ring will form itfelf into an ellipfe ZIBLnKFNZ, whofe longer Axis \(n O Z\) produced will pafs through \(M\), and its fhorter Axis \(B O F\) will terninate in \(B\) and \(F\). Let the ring be
filled with fluid particles, fo as to form a fphere round \(O\); then, as the whole moves toward \(M\), the fluid fphere being lengthened at \(Z\) and \(n\), will affume an oblong or oval form. If \(M\) is the Moon, \(O\) the Earth's center, \(A B C D E F G H\) the Sea covering the Earth's furface, it is evident, by the above reafoning, that while the Earth by its gravity falls toward the Moon, the Water direetly below her at \(B\) will fwell and rife gradually toward her : alfo the Water at \(D\) will recede from the center [ftriftly fpeaking, the center recedes from \(D]\), and rife on the oppofite fide of the Earth: while the Water at \(B\) and \(F\) is depreffed, and falls below the former level. Hence, as the Earth turns round its Axis from the Moon to the Moon again in \(24^{\frac{3}{4}}\) hours, there will be two Tides of Flood and two of Ebb in that time, as we find by Experience.
298. As this explanation of the ebhing and flowing of the, Sea is deduced from the Earth's conftantly falling toward the Moon by the power of gravity, fome may find a difficulty in conceiving how this is poffible, when the Moon is full, or in oppofition to the Sun; fince the Earth revolves about the Sun, and muft continually fall toward it, and therefore cannot fall contrary ways at the fame time : or if the Earth is conftantly falling toward the Moon, they mut come together at laft. To remove this difficulty, let it be confidered, that it is not the center of the Earth that defcribes the annual Orbit round the Sun, but the * common center of gravity of the Earth and Moon together: and that while the Earth is

\footnotetext{
* This center is as much nearer the Earth's center than the Moon's as the Earth is heavier, or contains a greater quantity of matter than the Moon, namely, abnut 40 times. If both bodies were fufpended on it, they would hang in equilibrio. So that dividing 240,000 miles, the Moon's diltance from the Earth's center, by 40, the excefs of the Earth's weight above the Moon's, the quotient will be 6000 miles, which is the diftance of the common center of gravity of the Earth and Moon from the Earth's center.
}

Plate. moving round the Sun, it alfo deferibes a Circle
ix. of the Moon's Orbit, and \(C\) the center of gravity of the Earch and Moon; while the Moon goes round her Orbit, the center of the Earth defcribes the Circle \(d g e\) round \(C\), to which Circle \(g a k\) is a tangent: and therefore, when the Moon has gone from \(M\) to a little paft \(W\), the Earth has moved from \(g\) to \(e\); and in that time has fallen toward the Moon, from the tangent at \(a\) to \(e\); and fo on, round the whole Circle.
299. The Sun's influence in raifing the Tides is but fmall in comparifon of the Moon's: for though the Earth's diameter bears a confiderable proportion to its diftance from the Moon, it is next to nothing when compared to its diftance from the Sun. And therefore, the difference of the Sun's attraction on the fides of the Earth under and oppofite to him, is much lefs than the difference of the Moon's attraction on the fides of the Earth under and oppofite to her: and therefore the Moon mult raife the Tides much higher than they can be raifed by the Sun.

Why the Tides are not higheft vhen the Moon is nn the Meridian.

Fig. I. at \(n\). The reafon is obvious; for though the Moon's attraction was to ceafe altogether when fhe was paft the Meridian, yet the motion of afcent communi-
communicated to the water before that time would make it continue to rife for fome time after ; much more mult it do fo when the attraction is only diminifhed: as a little impulfe given to a moving ball will caufe it ftill to move farther than orherwife it could have done. And as experience fhews, that the day is hotter about three in the afternoon than when the Sun is on the Meridian, becaufe of the encreafe made to the heat already imparted.
301. The Tides anfwer not always to the fame diftance of the Moon from the Meridian at the fame places; but are variounly affected by the action of the Sun, which brings them on fooner when the
plate IX.

Nor always anfwer to her being at the fame diftance from it. Moon is in her Firft and Third Quarters, and keeps them back later when fhe is in her Second and Fourth: becaufe, in the formercafe, the Tide raifed by the Sun alone would be earlier than the Tide raifed by the Moon; and in the latter cafe later.
302. The Vioon goes round the Earth in an elliptic Orbit, and therefore, in every Lunar Month, fhe approaches nearertothe Earth than her mean diftance, and recedes farther from it. When the is neareft, fhe attracts ftrongeft, and fo raifes is farthen, becaufe of her weaker attraction. When both Luminaries are in the Equator, and the Moon in Perigeo, or at her leaft diftance from the Earth, The raifes the Tides higheft of all, efpecially at her Conjunction and Oppofition; borh becaufe the equatorial parts have the greateft centrifugal force from their defcribing the largeft Circle, and from the concurring actions of the Sun and Moon. At the change, the attractive forces of the Sun and Moon being united, they diminifh the gravity of the waters under the Moon, and their gravity on the oppofite fide is diminifhed by means of a greater centrifugal force. At the Full, while the Moon raifes the Tide under and oppofite to her, the Sun acting in the fame line, raifes the Tide
under and oppofite to him; whence their onjoin effect is the fame as at the Change ; and in both cafes, occafion what we call the Spring Tides. But at the Quarters the Sun's action on the waters at \(O\) and \(H\) diminifhes the effect of the Moon's action on the waters at \(Z\) and \(N\); fo that they rife a little under and oppofite to the Sun at \(O\) and \(H\), and fall as much under and oppofite to the Moon at \(Z\) and \(N\); making what we call the Neap Tides, becaufe the Sun and Moon then aft crofs-wife to each other. But, ftrictly fpeaking, thefe Tides happen not till fome time after; becaufe in this, as in orher cafes, \(\$ 300\), the actions do not produce the greateft effect when they are at the ftrongeft, but fome time afterward.

Not greateft at the Equinoxes, and why.

The Tides would not immediarely ceafe upon the arnihilation of the Sun and Moun.
303. The Sun being nearer the Earth in Winter than in Summer, § 205, is of courfe nearer to it in February and OeFober, than in March and September; and therefore the greateft Tides happen not till fome time after the autumnal Equinox, and return a little before the vernal.

The Sea being thus put in motion, would continue toebb and flow for feveral times, even though the Sun and Moon were annihilated, or their influence fhould ceafe: as if a bafon of water were agitated, the water would continue to move for fome time after the bafon was left to ftand fill. Or like a pendulum, which having been put in motion by the hand, continues to make feveral vibrations without any new impulfe.

The lunar day, what. The Tides rife to une. qual heighes in the fame day, and why.
304. When the Moon is in the Equator, the Tides aré equally high in both parts of the lunar day, or time of the Moon's revolving from the Meridian to the Meridian again, which is 24 hours 50 minutes. But as the Moon declines from the Equaror toward either Pole, the Tides are alternately higher and lower at places having north or fouth Latitude. For one of the higheft elevations, which is that under the Moon, follows her tuward the
the Pole to which fhe is neareft, and the other declines toward the oppofite Pole; each elevation

PLATE 1X. defcribing parallels as far diftant from the Equator, on oppofite fides, as the Moon declines from it to either fide; and confequently, the parallels defcribed by thefe elevations of the water are twice as many degrees from one another as the Moon is from the Equator; increaling their diftance as the Moon increafes her declination, till it be at the greateft, when the faid parallels are, at a mean ftate, 47 degrees from one another: and on that day the Tides are moft unequal in their heights. As the Moon returns toward the Equator, the parallels defcribed by the oppofite elevations approach toward each other, until the Moon comes to the Equator, and then they coincide. As the Moon declines toward the oppofite Pole, at equal diftances, each elevation defcribes the fame parallel in the other part of the lunar day, which its oppofite elevation defcribed before. While the Moon has north declination, the greateft Tides in the northern Hemifphere are when the is above the Horizon; and the reverfe while her declination is fouth. Let NES 2 be the Earth, NCS its Axis, \(E \mathcal{Q}\) the Equator, \(\mathcal{T}\) os the Tropic of Cancer,

Fie. IIf. IV. V. tho the Tropic of Capricorn, \(a b\) the arctic Circle, cd the antarctic, \(N\) the north Pole, \(S\) the fouth Pole, \(M\) the Moon, \(F\) and \(G\) the two eminencies of water, whofe loweft parts are at \(a\) and d (Fig. III.) at \(N\) and \(S\) (Fig. IV.) and at \(b\) and \(c\) (Fig.V.) always 90 degrees from the higheft. Now when the Moon is in her greateft north declination at \(M\), the higheft elevation \(G\) under her, is on the Fig. III. Tropic of Cancer, \(\mathcal{T}_{\mathcal{T}_{\Omega}}\), and the oppofite elevation \(F\) on the Tropic of Capricorn, \(t\) w; and thefe two elevations defcribe the Tropics by the Earth's diurnal rotation. All places in the northern Hemifphere E \(N Q\) have the higheft Tides when they come into the pofition \(b a 2\), under the Moon; and the loweft Tides when the Earth's diurnal

PLATE rotation carries them into the pofition a \(\mathcal{T} E\), on comes to the fame point \(a\) again in 12 hours more, it has the luweft \(\mathrm{F} b \mathrm{~b}\). In feven days afterward, the Moun \(M\) comes to the equinoctial Circle, and
is over the Equator \(E 2\), when both elevations
defuribe the Equator; and in both Hemifpheres,
at equal dittances from the Equator, the Tides are
equally high in both parts of the lunar day. The the Moun \(M\) comes to the equinoctial Circle, and
is over the Equator \(E Q\), when both elevations
defiribe the Equator; and in both Hemifpheres,
at equal ditiances from the Equator, the Tides are
equally high in both parts of the lunar day. The the Moun \(M\) comes to the equinoctial Circle, and
is over the Equator \(E Q\), when both elevations
defuribe the Equator; and in both Hemifpheres,
at equal ditiances from the Equator, the Tides are
equally high in both parts of the lunar day. The the Moun \(M\) comes to the equinoctial Circle, and
is over the Equator \(E Q\), when both elevations
defuribe the Equator; and in both Hemifpheres,
at equal ditiances from the Equator, the Tides are
equally high in both parts of the lunar day. The the Moun \(M\) comes to the equinoctial Circle, and
is over the Equator \(E Q\), when both elevations
defuribe the Equator; and in both Hemifpheres,
at equal ditiances from the Equator, the Tides are
equally high in both parts of the lunar day. The the lde oppofite to the Moon; the reverfe happens at the fame time in the fouthern Hemilphere \(E \downharpoonleft Q\), as is evident to fight. The Axis of the Tides \(a C d\) has now its Poles a and d (being always 90 degrees from the highelt elevations) in the arctic and antarctic Circles; and cherefore it is plain, that at thefe Circles there is but one Tide of Flood, and one of Eib, in the lunar day. For, when the point \(a\) revolves half round to \(b\), in i2 lunar hours, it has a tide of Flood; but when it whole Phenomena being reverfed, when the Moon has fouth declination, to what they were when her declination was north, require no farther defeription.
305. In the three latt mentioned figures, the Farth is orthographically projected on the plane of the Meridian; but in order to defcribe a parcicular Phenomenon, we now project it on the plane of the Ecliptic. Let \(H Z O N\) be the Earth and Sea,

When both Tides are squally hiçh in the fame day, theyarrive at unequal intervals of lime; and vise ver \({ }^{\text {dá. }}\) \(F E D\) the Equator, \(T\) the Tropic of Cancer, \(C\) the arctic Circle, \(P\) the north Pole, and the Curves 1, 2, 3, छכc. 24 Meridians, or Hour-circles, interfecting each other in the Poles; \(A G M\) is the Moon's Orbit, \(S\) the Sun, \(M\) the Moon, \(Z\) the Water elevated under the Moon, and \(N\) the oppofite equal Elevation. As the loweft parts of the Water are always 90 degrees from the higheft, when the Moon is in either of the Tropics (as at M) the Elevation \(Z\) is on the Tropic of Capricorn, and the oppofite Elevation \(N\) on the Tropic of Cancer; the low-water Circle IICO touches the polar Circles at \(C\), and the high-water Circle

EIP6 goes over the Poles at \(P\), and divides every parallel of latitude into two equal fegments. In this cafe the 1 ides upon every parallel are alternately higher and lower; but they return in equal times : the point \(T\), for example, on the Tropic of Cancer (where the depth of the Tide is reprefented by the breadth of the dark fhade) has a fhallower Tide of \(H\) lood at \(T\), than when it revolves half round from thence to 6, according to the order of the numeral Figures; but, it revolves as foon from 6 to \(\tau\) as it did from \(\tau\) to 6 . When the Moon is in the Equinoctial, the Elevations \(Z\) and \(N\) are transferred to the Equator at \(O\) and \(H\), and the high and low-water Circles are got into each other's former places; in which. cafe the Tides return in unequal times, but are equally high in borh parts of the lunar day: for a place at I (under \(D\)) revolving as formerly, goes fooner from it to in (under \(F\)) than from II to 1 , becaufe the parallel it defcribes is cut into unequal fegments by the high water Circle HCO : but the points I and 11 being equidittant from the Pole of the Tides at \(C\), which is directly under the Pole of the Moon's Orbit \(M G A\), the Elevations are equally high in boch parts of the day.
306. And thus it appears, that as the Tides are governed by the Moon, they muft turn on the Axis of the Moon's Orbit, which is inclined \(23^{\frac{2}{2}}\) degrees to the Earth's Axis at a mean ftate: and therefore the Poles of the Tides mult be fo many degrees from the Poles of the Earth, or in oppofite points of the polar Circles, going round there Circles in every lunar day. It is true, that according to Fig. IV. when the Moon is vertical to the Equator EC2, the Poles of the Tides feem to fall-in with the Poles of the World \(N\) and \(s\); but when we confider that \(F G H\) is under the Moon's Orbit, it will appear, that when the Moon is over \(H\), in the Tropic of Capricorn, the north Pole of
the Tides (which can be no more than 90 degrees from under the Moon) mult be at \(C\) in the arctic Circle, not at \(P\), the north Pole of the Earth; and as the Moon afcends from \(H\) to \(G\) in her Orbit, the north Pole of the Tides muft fhift from \(c\) to \(a\) in the arctic Circle, and the fouth Pole as much in the antarctic.

It is not to be doubted, but that the Earth's quick rotation brings the Poles of the Tides nearer to the Poles of the World, than they would be if the Earth were at refl, and the Moon revolved about it only once a month; for orherwife the Tides would be nore unequal in their heights, and times of their returns, than we find they are. But how near the Earth's rotation may bring the Poles of its Axis and thofe of the Tides together, or how far the preceding Tides may affect thofe which follow, fo as to make them keep up nearly to the fame heights, and times of ebbing and flowing, is a problem more fit to be folved by obfervation than by theory.

Toknnw at what times we may expeet the preatell and leaft Tides.
307. Thofe who have opportunity to make obfervations, and choofe to fatisfy themfelves whether the Tides are really affected in the above manner by the different pofitions of the Moon, efpecially as to the unequal times of their returns, may take this general rule for knowing when they ought to be fo affected. When the Earth's Axis inclines to the Moon, the northern Tides, if not retarded in their paffage through Shoals and Channels, nor affected by the Winds, ought to be greateft when the Moon is above the Horizon, leaft when fhe is below it; and quite the reverfe when the Earth's Axis declines from her: but in borh cafes, at equal intervals of time. When the Earth's Axis inclines fidewife to the Moon, both Tides are equally high, but they happen at unequal intervals of time. In every Lunation the Earth's Axis inclines once to the Moon, once from her,
and twice fidewife to her, as it does to the Sun every year: becaufe the Moon goes round the Ecliptic every Month, and the Sun but once in a year. In Summer, the Earth's Axis inclines toward the Moon when New; and therefore the day-tides in the north ought to be higheft, and night-tides loweft, about the Change: at the Full the reverfe. At the Quarters they ought to be equally high, but unequal in their returns; becaufe the Earth's Axis then inclines fidewife to the Moon. In Winter, the Phenomena are the fame at FullMoon as in Summer at New. In Aotumn, the Earth's Axis inclines fidewife to the Moon when New and Full; therefore the Tides ought to be equally high and unequal in their returns at thefe times. At the Firft Quarter, the Tides of Flood flould be leaft when the Nioon is above the Horizon, greateft when the is below it; and the reverfe at her third Quarter. In Spring, the Phenomena of the Firt Quarter anfiver to thofe of the Third Quarter in Autumn; and vice verfa. The nearer any time is to either of thefe feafons, the more the Tides partake of the Phenomena of there feafons; and in the middle between any two of them the Tides are at a mean ftate between thofe of both.
308. In open Seas, the Tides rife but to very fmall heights in proportion to what they do in wide-mouched rivers, opening in the Direction of the Stream of Tide. For, in Channels growing

Why the Tides rife higher in Riverp.than in the Sea. narrower gradually, the water is accumulated by the oppofition of the contracting Bank. Like a gentle wind, little felt on an open plain, but itrong and brifk in a ftreet; efpecially if the wider end of the ftreet be next the plain, and in the way of the wind.
309. The Tides are fo retarded in their paffage through different Shoals and Channels, and otherwife fo varioully affeeted by Atriking againft Capes and Headlands, that to different places they happen at all diftances of the Moon from the Meridian; Q3 confe-

The Tides happen at all dinances of the Muon from the Meridian at different places, and why.
confequently at ail hours of the lunar day. The Tide propagated by the Moon in the German Ocean, when fhe is three hours paft the Meridian, takes 12 hours to come from thence to Londonbridge; where it arrives by the time that a new Tide is raifed in the Ocean. And therefure when the Moon has north declinarion, and we fhould expect the Tide at London to be greateft when the Moon is above the Horizun, we find it is leat; and the contrary when the has fouch declination. At feveral places it is high-water three hours before the Moon comes to the Mieridian; but that Tide which the Moon pufhes as it were before her, is only the Tide oppofite to that which was raifed by her when fhe was nine hours paft the oppofite Meridian.

The Water never rifes in Lakes.

The Monn raifes Tides in the Air.

Why the Meicury in the Barometer is not affe"ed by the cë ial Tides.
310. There are no Tides in Lakes, becaure they are generally fo fmall, that when the Moon is vertical he atracts every part of them alike, and therefore by rendering all the water equally light no part of it can be raifed higher than another. The Meuiterrancan and Baltic Seas have very fimall elevations, becaule the Inlets by which they communicate with the Ocean are fo narrow, that they cannot, in fo thort a time, receive or difcharge enough to raife or fink their furfaces fenfibly.

3II. Air being lighter than Water, and the furface of the Acmophere being nearer to the Moon than the furface of the Sea, it cannot be doubted that the M oon raifes much higher Tides in the Air than in the Sea. And therefore many have wondered why the Mercury does not link in the Barometer when the Moon's action on the particles of Air makes them lighter as the paffes over the Meridian. But we muft confider, that as thefe particles are rendered lighter, a greater number of them is accumulated, until the deficiency of gravity be made up by the height of the column; and then there is an equilibrium, and confequently
fequently an equal preffure upon the Mercury as before; fo that it cannot be affeeted by the aërial Tides.

\section*{C H A P. XVIII.}

Of Eclipfes: Their Number and Periods. A large Catalogue of Ancient and Modern Eclipfes.
312. VERY Planet and Satellite is illuminated by the Sun, and cafts a fhadow toward that point of the Heavens which is oppofice to the Sun. This fhadow is nothing but a privation of light in the fpace hid from the Sun by the opake body that intercepts his rays.

3r3. When the Sun's light is fo intercepted by the Moon, that to any place of the Earth the Sun appears partly or wholly covered, he is faid to undergo an Eclipfe; though, properly Ipeaking, it is only an E.clipfe of that part of the Earth where the Moon's fhadow or * Penumbra falis. When the Earth comes between the Sun and Moon, the Moon falls into the Earth's fhadow; and having no light of her own, fhe fuffers a real Eclipfe from the interception of the Sun's rays. When the Sun is eclipfed to us, the Moon's Inhabitants on the fide next the farth (if any fuch there be) fee her Shadow like a dark fpot travelling over the Earth, about twice as faft as its equatorial parts move, and the fare way as they move. When the Moon is in an Eclipfe, the Sun appears eclipfed to her, total to all thofe parts on which the E arth's fhadow falls, and of as long continuance as they are in the fhadow.
314. That the Earth is fpherical (for the hills take off no more from the roundnefs of the Earth, than grains of duft do from the roundnefs of a

A proof that the Earth and Mcon are globulas bodies.

\footnotetext{
* The Penumbra is a faint kind of fhadow all around the perfeet Shadow of the Planet or Sasellite, and will be more fully explained by and by.
}

Eclipres of the Sun and Moan, what.

A thadow, what.
common Globe) is evident from the figure of its fhadow on the Moon; which is always bounded by a circular line, although the Earth is inceffantly turning its different fides to the Moon, and very feldom fhews the fame fide to her in different Eclipfes, becaufe they feldom happen at the fame hours. Were the Earth fhaped like a round flat plate, its fhadow would only be circular when either of its fides directly faced the Moon; and more or lefs elliptical as the liarth happened to be turned more or lefs obliquely toward the Moon when fhe is eclipfed. The Moon's differenc Phafes prove her to be round, § 254 ; for, as fhe keeps ftill the fame fide toward the Earth, if that fide were flat, as it appears to be, the would never be vifible from the Third Quarter to the Firtt; and from the Firtt Quarter to the Third, fhe would appear as round as when we fay fhe is Full: becaufe at the end of her Firft Quarter the Sun's light would come as fuddenly on all her fide next the Earth, as it does on a flat wall, and go off as abruptly at the end of her Third Quarter.

And that the Sun is much bigger than the Earch, and the Moon much lefs.
315. If the Earth and Sun were equally big, the Earth's fhadow would be infinitely exiended, and all of the fame bulk; and the Planet Mars, in either of its Nodes and oppolite to the Sun, would be eclipfed in the Earth's fhadow. Were the Earth bigger than the Sun, its fhadow would increafe in bull the farther it extended, and would eclipfe the great Planets, Jupiter and Saturn, with all their Moons, when they were oppofite to the Sun. But as Mars in oppofition never falls into the Earth's fhadow, although he is not then above 42 millions of miles from the Earth, it is plain that the Earth is much lefs than the Sun; for otherwife its fladow could not end in a point at fo fmall a diftance. If the Sun and Moon were equally big, the Moon's fhadow would go on to the Earth with an equal breadth, and cover a portion of the Earth's lurface more than 2000 miles broad,
broad, even if it fell directly againft the Earth's center, as feen from the Moon; and much more if it fell obliquely on the Earth: but the Moon's fhadow is feldom 150 miles broad at the Earth, unlefs when it falls very obliquely on it in total Eclipfes of the Sun. In anuular Eclipfes, the Moon's real fhadow ends in a point at fome diftance from the Earth. The Moon's fmall diftance from the Earth, and the fhortnefs of her fhadow, prove her to be lefs than the Sun. And as the Earth's fhadow is large enough to cover the Moon, if her diameter were three times as large as it is (which is evident from her long continuance in the fhadow when fhe goes through its center), it is plain that the Earth is much bigger than the Moon.
316. Though all opake bodies on which the Sun thines have their fhadows, yet fuch is the bulk of the Sun, and the diflances of the Planets, that the primary Planets can never eclipfe one another. A Primary can eclipfe only its Secondary, or be eclipfed by it; and never but when in oppofition or conjunction with the Sun. The primary Planets are very feldum in thefe pofitions, but the Sun and Moon are fo every month: whence one may imagine that the fe two Luminaries fhould be eclipfed every month. But there are few Eclipfes in refpect of the number of New and Full Moons; the reafon of which we fhall now explain.
317. If the Moon's Orbit were coincident with the Plane of the Ecliptic, in which the Earch always moves, and the Sun appears to move, the

Whv there are folew Ecliffer. Moon's fhadow would fall upon the Earth at every Change, and eclipfe the Sun to fome parts of the Earth. In like manner the Moon would go through the Middle of the Earth's nadow, and be eclipfed at every Full; bur with this difference, that fhe would be totally darkened for above an hour and an half; whereas the Sun never was above four minutes totally eclipfed by the interpofition

The Moon's of the Moon. But one ha'f of the Moon's Orbit

Simits of Eet pfes. is elevated \(5 \frac{1}{T}\) drgrees above the Eclipric, and the other half as much depreffed below it: confe.. quently, the Moon's Orbit interfects the Ecliptic in two oppofite points called the Moon's Nodes, as has been already taken notice of, \(\S 28 \%\). When thefe poinis are in a right line with the center of the Sun at New or Full Moon, the Sun, Moon, and Earth, are all in a right line; and if the Moon be then New, her thadow falls upon the Farth; if Full, the Earth's fhadow falls upon her. When the Sun and Moon are more than 17 degrees from eiliser of the Nodes at the time of Conjunction, the Moon is then generaliy too high or too low in her Urbit to caft any part of her hhadow upon the Earth. And when the Sun is more than 12 degrees from either of the Nodes ar the time of Full Moon, the Moon is generally too high or too low in her Orbit to go through any part of the Larth's fhadow: and in buth thefe cafes there will be no Eclipfe. But when the Moon is lefs than 17 degrees from either Nude at the time of (onjunction, her fladow or l'enumbra falls more or lefs upon the larth, as the is more or lefs within this limit *: And when the is lefs than 12 degrees from either Node at the time of Oppofition, the goes through a greater or lefs portion of the Earth's thadow as the is more or lels within this limit. Her Orbit contains 360 degrees, of which 17 , the limit of folar Ecliples on eirher lide of the Nodes, and 12 , the limit of lunar Eclipfes, are but fmall portions: and as the Sun commonly paffes by the Nodes but twice in a year, it is no wonder that

\footnotetext{
* This admits of fome variation: for, in apogeal Eclipfes, the folar limit is but \(16 \frac{1}{z}\) degrees; and in perigeal Eclip'es is is is':-When the Full Moon is in her Apogee, the will be eclipfed if the be within \(10 \frac{1}{2}\) degrees of the Node; and when the is full in her Perigee, fhe will be eclipfed if the be within 12 y \(\dot{0}\) degres of the Node.
}

Plate \(X\).
we have fo many New and Full Moons without plate X. Eclipfes.

To illuftrate this, let \(A B C D\) be the Ecliptic, \(R S T^{\prime} U\) a Circle lying in the fame Plane with the Ecliptic, and \(V W X \mathscr{Y}\) the Moon's Orbit, all thrown into an oblique view, which gives them an elliptical fhape to the eye. One half of the Moon's Orbit, as \(V W X\), is always below the Ecliptic, and the other half \(X \Upsilon V\) above it. The points \(V\) and \(X\), where the Moon's Orbit interfects the Circle \(R S T^{\prime} U\), which lies even with the Ecliptic, are the Moon's Nodes; and a right line, as \(X E V\), drawn, from one to the other, through the Earth's center, is called the Line of the Nudes, which is carried almoft parallel to itfelf round the Sun in a year.

If the Moon moved round the Earth in the Orbit RSTU, which is coincident with the Plane of the Ecliptic, her fhadow would fall upon the Earth every time fhe is in conjunction with the Sun, and at every oppofition fhe would go through the Earth's fhadow. Were this the cafe, the Sun would be eclipfed at every Change, and the Moon at every Full, as already mentioned.

But although the Moon's fhadow \(N\) muft fall upon the Earth at \(a\), when the Earth is at \(E\), and the. Moon in conjunction with the Sun at \(i\), becaufe the is then very near one of her Nodes; and at her oppofition \(n\) fhe muft go through the Earth's fhadow \(I\), becaufe fhe is then near the other Node; yet, in the time that fhe goes round the Earth to her next Change, according to the order of the letters \(X \Upsilon V W\), the Earth advances from \(E\) to \(e\), according to the order of the letters EFGH, and the line of the Nodes \(V E X\) being carried nearly parallel to itfelf, brings the point \(f\) of the Moon's Orbit in conjunction with the Sun at that next Change; and then the Moon being at \(f\), is too high above the Ecliptic to caft her hhadow on the Earth : and as the Earth is fill moving forward, the Moon at her next oppofition will be at \(g\), too

Line of the

Fig. I. Nudes.
platex. far below the Ecliptic to go through any part of the Earth's fhadow; for by that time the point \(g\) will be at a confiderable diftance from the Earth as feen from the Sun.

When the Earth comes to \(F\), the Moon in conjunction with the Sun \(Z\) is not at \(k\), in a Plane coincident with the Ecliptic, but above it at \(Y\) in the highelt part of her Orbit: and then the point \(b\) of her fhadow O goes far above the Earth (as in Fig. II. which is an edse view of Fig. I.). The Moon at her next oppofition is not at o (Fig. I.) but at \(W\), where the Earth's fhadow goes far above her (as in Fig. II.). In both thefe cafes the line of the Nodes VFX (Fig. I.) is about godegrees from the Sun, and both Luminaries are as far as poffible from the limits of Eclipfes.

When the Earth has gone half round the Ecliptic from \(E\) to \(G\), the line of the Nodes \(V G X\) is nearly, if not exactly, direcied toward the Sun at \(Z\); and then the New INoon \(l\) cafts her fhadow \(P\) on the Earth \(G\); and the Full Moon \(p\) goes through the Earth's fhadow L; which brings on Eclipfes again, as when the Earth was at \(E\).

When the Earth comes to \(H\), whe New Moon falls not at \(m\) in a plane coincident with the Ecliptic \(C D\), but at \(W\) in her Orbit below it: and then her fhadow 2 (fee Fig. I1.) goes far below the Earth. At the next Full the is not at \(q\) (Fig. I.) but at \(Y\) in her Orbit \(5 \frac{1}{3}\) degrees above \(q\), and at her greatelt height above the Ecliptic CD ; being then as far as poffible, at any oppofition, from the Earch's fhadow M (as in Fig. II.).

So, when the Earth is at \(E\) and \(G\), the Moon is about her Nodes at New and Full; and in her greateft north and fouttb Declination (or Lacitude as it is generally called) from the Ecliptic at her Quarters: but when the Earth is at \(F\) or \(H\), the Moon is in her greateft north and foutb Declinations from the Ecliptic at New and Full, and in the Nodes about her Quarters.
318. The point \(X\) where the Moon's Orbit croffes the Ecliptic is called the Afcending Node, becaufe the Moon afcends from it above the Ecliptic: and the oppofite point of interfection \(V\) is called the Defcending Node, becaufe the Moon defcends from it below the Ecliptic. When the Moon is at \(\mathscr{Y}\) in the higheft point of her Orbit, fhe is in her greateft nortb Latiude; and when the is at \(W\) in the loweft point of her Orbit, the is in her greateft fouth Latitude.
319. If the line of the Nodes, like the Earth's Axis, were carried parallel to itfelf round the Sun, there would be juft half a year between the conjunctions of the Sun and Nodes. But the Nodes fhift backward, or contrary to the Earth's annual motion, \(19 \frac{1}{3}\) degrees every year; and therefore the fame Node comes round to the Sun 19 days fooner every year than on the year before. Confequently, from the time that the afcending Node \(X\) (when the Earth is at \(E\)) paffes by the Sun as feen from the Earth, it is only 173 days (not half a year) till the defcending Node \(V\) paffes by him. Therefore, in whatevertime of the year we have Eclipfes of the Luminaries about either Node, we may be fure that in 173 days afterward we fhall have Eclipfes about the other Node. And when at any time of the year the line of the Nodes is in the fituation \(V G X\), at the fame time next year it will be in the fituation \(r G s\); the afcending Node hav-

\section*{Whick}
brings on the Eclipfes fooner every year than they would be if the Nodes had not fuch a motion. ing gone backward, that is, contrary to the order of Signs, from \(X\) to \(s\), and the defcending Node from \(V\) to \(r\); each \(19 \frac{1}{3}\) degrees. At this rate the Nodes fhift through all the figns and degrees of the Ecliptic in 18 years and 225 days; in which time there would always be a regular period of Eclipfes, if any complete number of Lunations were finifhed without a fraction. But this never happens; for if both the Sun and Moon fhould ftart from a line of conjunction with either of the Nodes in any point of the Ecliptic, the Sun would
perform i 8 annual revolutions and 222 degrees over and above, and the Moon 230 Lunations and 85 degrees of the 231 ft , by the time the Node came round to the fame point of the Ecliptic again: fo that the Sun would then be \(13^{8}\) degrees from the Node, and the Moon 85 degrees from the Sun.

A period of Ecliples.
320. But, in 223 mean Lunations, after the Sun, Moon, and Nodes have been once in a line of conjunction, they return fo nearly to the fame ftate again, as that the fame Node, which was in conjunction with the Sun and Moon at the beginning of the firt of thefe Lunations, will be within \(28^{\prime} \mathrm{I} 2^{\prime \prime}\) of a degree of a line of conjunction with the Sun and Moon again, when the laft of there Lunations is completed. And therefore, in that time, there will be a regular period of Eclipfes, or return of the fame Eclipfe, for many ages.-In this period (which was firft difcovered by the Cbaldcans) there are 18 Hulian years II days 7 hours 43 minutes 20 feconds, when the latt day of February in Leap-years is four times included: but when it is five times included, the period confifts of only 18 years 10 days 7 hours 43 minutes 20 feconds. Confequently, if to the mean time of any Eclipfe, either of the Sun or Moon, you add 18 Fulian years 11 days 7 hours 43 minutes 20 feconds, when the laft day of February in Leapyears comes in four times, or a day lefs when it comes in five times, you will have the mean time of the return of the fame Ecliple.

But the falling back of the line of conjunctions or oppofitions of the Sun and Moon \(28^{\prime}\) I \(2^{\prime \prime}\) with refpect to the line of the Nodes in every period, will wear it out in procefs of time; and after that, it will not return again in lefs than 12492 years. Thefe Eclipfes of the Sun, which happen about the Afcending Node, and begin to come in at the North Pole of the Earth, will go a little foutherly at each return, till they go quite off the Earth at
the South Pole; and thofe which happen about the Defcending Node, and begin to come in at the South Pole of the Earth, will go a little northerly at each return, till at laft they quite leave the Earth at the north Pole.

To exemplify this matter, we fhall firft confider the Sun's Fclipfe, Marcb 2 if Old Stile (April ift New Stile) A. D. 1764, accordirg to its mean revolutions, without equating the times, or the Sun's diftance from the Node; and then according to its true equated times.

This Ecliple fell in the open fpace at each return, quite clear of the Earth, ever fince the creation till A. 1. 1295, June 13 th Old Srile, at 12 h .52 m .59 fec poft meridiem, when the Moon's Hadow firft touched the Earth at the North Pole; the Sun being then \(17^{\circ} 4^{8^{\prime}} 27^{\prime \prime}\) from the Afcending Node.-In each period fince that cime, the Sun has come \(28^{\prime \prime} 12^{\prime \prime}\) nearer and nearer the fame Node, and the Moon's fhadow has therefore gone more and more foutherly. - In the year 1962, yuly 18th Old Stile, at roh. 36 m .21 fec. p. m. when the fame Eclipfe will have returned 38 times, the Sun will be only \(24^{\prime} 45^{\prime \prime}\) from the Afcending Node, and the center of the Moon's flatow will Gall a litule northward of the Earth's center. - Ac the end of the next following period, A. D. 1980 Guly , 8 th Old Stile, at 18 h . 19 m .4 Ifec . p. m. the Sun will have receded back \(3^{\prime} 27^{\prime \prime}\) from the Afcending Node, and the Moon will have a very fmall degree of fouthern Latitude, which will caufe the center of her fhadow to pafs a very fmall matter fouth of the Earth's center.-After which, in every following period, the Sun will be \(28^{\prime} 12^{\prime \prime}\) farther back from the Afcending Node than in the period laft before; and the Moon's fliadow will go ftill farther and farther fouthward, until September 12 th Old Stile, at \(23 \mathrm{~h} .46 \mathrm{~m} .22 \mathrm{fec} . \mathrm{p} . \mathrm{m}\). A. D. 2665 ; when the Eclipfe will have completed its \(77^{\text {th }}\) periodical return, and will go quite
quite off the Earth at the South Pole (the Sun being then \(17^{\circ} 55^{\prime} 22^{\prime \prime}\) back from the Nodr); and it cannot come in at the North Pole, fo as to begin the fame Courfe over again, in lefs than 12492 years afterward.-And fuch will be the cafe of every orher Eclipfe of the Sun: for as there is about is degrees on each fide of the Node within which there is a pofibility of Eclipfes, their whole revolution goes through 36 degrees abour that Node, which, taken from 360 degrees, leaves remaining 324 degrees for the Eclipfes to travel in expanfum. And as this 36 degrees is not gone through in lefs than 7? periods, which takes up 1388 years, the remaining 324 degrees cannot be fo gone through in lefs than 12492 years. For, as 36 is to 1388 , to is 324 to 12492 .

32 I . In order to thew both the mean and true times of the returns of this Eclipfe, through all its periods, together with the mean Anomalies of the Sun and Moon, at each return, and the mean and true diftances of the Sun from the Moon's Afcending Node, and the Moon's true Latitude at the true time of each New Moon, I have calculated the following Tables for the fake of thofe who may choofe to project this Eclipfe at any of its returns, according to the rules laid down in the XVth Chapter; and have by that means taken by much the greatelt part of the trouble off their hands. All the times are according to the Old Stile, for the fake of a regularity which, with refpect to the nominal days of the Months, does not take place in the New: but by adding the days difference of Stile, they are reduced to the times which agree with the New Stile,

According to the mean (or fuppofed equable) motions of the Sun, Moon, and Nodes, the Moon's thadow in this Eclipfe would have firft touched the Earth at the North Pole, on the \(13^{\text {th }}\) of Fune, A. D. 1295, at 12 h .52 m . 59 fec. paft noon on the Meridian of London; and would quite leave the

Earth at the South Pole, on the 12 th of September, A. D. 2665 , at 23 h .46 m .22 fec. paft Noon, at the completion of its 77 th period; as fhewn by the firt and fecond Tables.

But, on account of the true (or unequable) motions of the Sun, Moon; and Nodes, the firtt coming in' of this Eclipfe, at the North Pole of the Earth, was on the 24 th of Fune, A. D. 13 r 3 , at 3 h .57 m .3 fec. paft Noon; and it will finally leave the Fiarth at the South Pole, on the 3 Ift of fuly, A. D. 2593 , at \(10 \mathrm{~h} .25^{\circ} \mathrm{m}\). 3 r fec. pait Noon, at the completion of its 72 d period; as fhewn by the third and fourth Tables.- So that the true motions do not only alter the true times from the mean, but they alfo cut off five periods from thofe of the mean returns of this Eclipfe.

TABLE I. The mean Time of New Moon, witb the mean Anomalies of the Sun and Moon, and the Sun's mean Diflance from the Moon's Afcending Node, at the mean Time of eack periodical Return of the Sun's Eclipfe, March 21/t, 1764, from its firft coming upon the Earth fince the Creation, till it falls right againf the Earth's center, according to the Old Stile.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Mean Time of New Moon. & Sun's mean Anomaly. & Moon's mein] Anomaly. & sun': mean Diff. from the Node. \\
\hline & & & & & s 0 \\
\hline - & 1277 & 391 & 11175741 & 12631 & 1816 \\
\hline 1 & 129 & une 131212525971 & \(1 \begin{array}{llllll}11 & 28 & 27 & 38\end{array}\) & 1234019 & - \(174^{88} 27\) \\
\hline 2 & 1313 & une \(23 \begin{array}{lllll} & 20 & 36 & 19\end{array}\) & - 85735 & 1204856 & -1720 15 \\
\hline 3. & 1331 & uly \(\begin{array}{llll}5 & 4 & 19 & 30\end{array}\) & - 192732 & 1175735 & - 16522 \\
\hline 4 & I. 349 & July 15 & - 295729 & 115610 & - 1623 \\
\hline 5 & 1367 & July \(26 \begin{array}{lllll} & 19 & 4^{6} & 19\end{array}\) & 1102726 & 1121447 & -15 155 \\
\hline 6 & 1385 & Aug. \(6 \quad 32939\) & 1205723 & 92324 & -152725 \\
\hline 7 & 1403 & Aug. 17111259 & \(\begin{array}{lllll}2 & 1 & 27 & 20\end{array}\) & 632 & -1459 \\
\hline 8 & 1421 & Aug. 27 i8 5619 & 2115717 & 34038 & -1431 \\
\hline 9 & 1439 & Sept. \(8 \quad 23939\) & 2222714 & - 4915 & - 14 \\
\hline 10 & 1457 & Sept. 18 10 2259 & 25711 & - \(27575^{2}\) & - 1334 \\
\hline 11 & 1475 & Sept. 2918 18 619 & \(\begin{array}{llll}3 & 13 & 27\end{array}\) & - 25 \begin{tabular}{l}
\\
\hline
\end{tabular} & - 13 \\
\hline 12 & 1493 & Oct. 10 1 4939 & 32357 & - 2215 & - 1238 \\
\hline 13 & 1511 & OCt. 21193229 & 4427 & - 192343 & - 129 \\
\hline 14 & 1529 & Cet. 311771619 & 4145659 & - 163220 & 01111 \\
\hline 15 & 1547 & Nov. \(12 \times 5940\) & 4252656 & - 134057 & 1113 \\
\hline 16 & 1565 & Nov. 22843 & \(5 \begin{array}{llllll}5 & 5 & 56 & 53\end{array}\) & - 104934 & - 1045 \\
\hline 17 & 1583 & Dec. 316 \begin{tabular}{llll}
\\
\hline
\end{tabular} & 5162650 & - 7589 & - 1017 \\
\hline 18 & & Dec. 14 O 940 & 5265647 & - 51648 & - 948 \\
\hline 19 & 161 & Dec. \(25 \begin{aligned} & 7 \\ & 53\end{aligned}\) & \(\begin{array}{lllll}6 & 7 & 26 & 44 \\ 6 & 7 & 56\end{array}\) & O-121515 & 92042 \\
\hline 20 & :63 & \(\begin{array}{|llllll|}\text { Jan. } & 4 & 15 & 36 & 20 \\ \text { Jan. } & 15 & 23 & 19 & 40\end{array}\) & \(6175^{6} 411\) & \(\left\lvert\, \begin{array}{llll}11 & 29 & 24 & 2 \\ 11 & 26 & 32 & 39\end{array}\right.\) & 85230 \\
\hline & 167 & \(\begin{array}{lllll}\text { an. } & 15 & 23 \\ \text { an. } & 26 & 7\end{array}\) & 785635 & 1112341414 & - 756 \\
\hline 23 & 169 & Feb. \(\begin{array}{llllll}14 & 46 & 20\end{array}\) & \(\begin{array}{lllll}7 & 19 & 26 & 32\end{array}\) & 111204953 & - 727 \\
\hline 24 & 171 & Feb. 16222940 & 7295629 & \(1117{ }_{11} 17830\) & 59 \\
\hline 25 & 17 & Feb. 288613 & 8102626 & 11157 & - 631 \\
\hline 26 & & Mar. 101135620 & 8205623 & 11112121544 & - 63 \\
\hline 27 & 178 & Mar. 20213940 & \(\begin{array}{lllll}9 & 1 & 26 & 20\end{array}\) & 111992421 & 5 \\
\hline 28 & 17 & Apr. 11523 & \(\begin{array}{llllll}9 & 11 & 56 & 17\end{array}\) & & - 56550 \\
\hline 29 & 18 co
1818 & & \(\left|\begin{array}{ccccc}9 & 22 & 26 & 14 \\ 10 & 2 & 5 & 11\end{array}\right|\) & \begin{tabular}{|lllll}
11 & 3 & 41 & 35 \\
11 & 0 & 50 & 12
\end{tabular} & - 433837 \\
\hline 30 & 1818
1836 & \[
\mid \text { Apr. } 22204940
\] & & & - \(0410=5\) \\
\hline 31
32
3 & 18 & \[
\left|\begin{array}{lllll}
\text { May } & 3 & 4 & 33 & 0 \\
\text { May } & 14 & 12 & 16 & 20
\end{array}\right|
\] & \(\left\lvert\, \begin{array}{llll}10 & 13 & 26 & 8 \\ 10 & 23 & 56 & 5\end{array}\right.\) & \(\left|\begin{array}{cccc}10 & 27 & 58 & 49 \\ 10 & 25 & 7 & 20\end{array}\right|\) & \(034^{2} 12\) \\
\hline 33 & 18 & May 24195940 & \(11 \begin{array}{llll}11 & 4 & 26 & 2\end{array}\) & 102216 & - 24547 \\
\hline 34 & 1890 & une \(\begin{array}{llll}5 & 3 & 43\end{array}\) & 11455 & \(1019244^{\circ}\) & - 21735 \\
\hline & 190 & une \(15 \begin{array}{llllll}1 & 20 & 20\end{array}\) & 112525 & & 4922 \\
\hline 36 & 1926 & une 2619 & - 555 & 1013415 & \\
\hline 37 & 1944 & uly \(\begin{array}{llll}7 & 2 & 53\end{array}\) & - 1625 & 10105031 & \(05^{-1} 57\) \\
\hline
\end{tabular}

TABLE II The mean Time of New Moon, with the mean Anomalies of the Sun and Moon, and the Sun's mean Diffance from the Moon's Afcending Node, at the mean Time of ench periodical Return of the Sun's Eclipfe March 21ft, 1764 , from the mean Time of its falling rigbt againft the Earth's Center, till it finally leaves the Earth according to the Julian or Old Stile.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Niean Time of New Moon. & Sun's mean Anomaly. & Moon's mean Anomaly. & \[
\begin{aligned}
& \text { Sun's mean Diff } \\
& \text { from the Node. }
\end{aligned}
\] \\
\hline & & Mo & & & 30.1 \\
\hline 39 & & July 28 18 19 & 2544 & 45 & 11 \\
\hline 40 & 1998 & Aug. 923 & 11755 & 1021622 & 11292820 \\
\hline 4 & 2016 & Aug. 19984621 & 1282538 & 9292459 & \\
\hline 42
43 & 52 & Avg. 30172941 & 285536 & 9263336 & 11283155 \\
\hline \[
43
\] & 2052 & Sept. 10113 & 2192533 & 9234213 & 11288343 \\
\hline \[
44
\] & 2070 & Sept. 21885621 & \(2 \begin{array}{llllll}2 & 29 & 55 & 32\end{array}\) & 9205050 & 11.273530 \\
\hline \[
\begin{aligned}
& 45 \\
& 46
\end{aligned}
\] & \[
2088
\] & Oct. 1163941 & 3102527 & 9175927 & \\
\hline \[
46
\] & \[
\begin{aligned}
& 2106 \\
& 2124
\end{aligned}
\] & 13023 & \(\begin{array}{rrrrr}3 & 20 & 5 & 24 \\ 4 & 1 & 2 & 4\end{array}\) & \(\begin{array}{lllll}9 & 15 & 8 & 4 \\ 0 & 12 & 16 & 4\end{array}\) & \(\begin{array}{llllll}11 & 26 & 39 & 5\end{array}\) \\
\hline 48 & 2142 & Nov. 315 & 12521 & 9121041 & \(\begin{array}{llllll}11 & 26 & 10 & 53 \\ 11 & 25 & 42 & 40\end{array}\) \\
\hline 49 & 2160 & Nov. \(1323{ }^{3} 18\) & 4222515 & 9633 & \begin{tabular}{l}
254240 \\
2514 \\
\hline
\end{tabular} \\
\hline & 2178 & Nov. \(25 \begin{array}{lllll} & 7 & 16 & 21\end{array}\) & 255 & 342 & \\
\hline 5 & 2196 & Dec. \(514 \begin{array}{llll} & 59\end{array}\) & \(\begin{array}{llll}5 & 13 & 25\end{array}\) & \(\bigcirc 51\) & \\
\hline 5 & 214 & Das. 162243 & 523 & 8275947 & \(\begin{array}{lllllll}11 & 23 & 49 & 50\end{array}\) \\
\hline 53 & 2232 & Dec. \(27 \begin{array}{lllll} & 66 & 21\end{array}\) & 6 & \(825 \begin{array}{llll}8 & 8 & 24\end{array}\) & \\
\hline 54 & 225 & an. 7141481 & 61455 & \(82217 \quad 1\) & \(\begin{array}{lllll}11 & 22 & 53 & 25 \\ 11 & 22 & 5 & \end{array}\) \\
\hline & 2269 & 172153 & & 8192538 & \(11 \begin{array}{llllll}11 & 22 & 15 & 13\end{array}\) \\
\hline & 2237 & Jan. \(29 \begin{array}{lllll} & 5 & 36 & 21\end{array}\) & \(7 \begin{array}{llllll}7 & 5 & 54 & 55\end{array}\) & 8163115 & \begin{tabular}{ll}
11 & 21 \\
1 & 57 \\
\hline
\end{tabular} \\
\hline 57 & 230 & Feb. 813131941 & 7162452 & \(813425^{2}\) & \\
\hline 58 & 2323 & Feb. 19213 & 7265449 & \(8105^{1} 29\) & 1121 \\
\hline \[
\begin{array}{l|l}
59 \\
60 & 2
\end{array}
\] & 2341 & Mar. 24 \begin{tabular}{llll}
46 & \\
\hline
\end{tabular} & 872446 & 8806 & \\
\hline & 2359 & Mar. 13122942 & 8175443 & \(8 \quad 5 \quad 8 \quad 431\) & \(1 \begin{array}{llll}11 & 20 & 4 & 10\end{array}\) \\
\hline & 237 & \begin{tabular}{|crrrrr}
Mar. & 23 & 20 & 13 & 2 \\
Apr. & 4 & 3 & 56 & 22
\end{tabular} & \(\begin{array}{rrrrr}8 & 28 & 24 & 40 \\ 9 & 8 & 54\end{array}\) & \(8{ }^{8}\) & \\
\hline 6 & 2413 & 56 & 5437 & 72925 & \(\begin{array}{llllll}11 & 19 & 7 & 45\end{array}\) \\
\hline 64 & 2431 A & & 192434 & 72634 & \(1 \begin{array}{lllll}1 & 18 & 39 & 33\end{array}\) \\
\hline & 2449 M & May 630622 & & \[
\begin{array}{llll}
7 & 23 & 43 & 11 \\
7 & 20 & 1
\end{array}
\] & 18 I1 20 \\
\hline \[
\begin{array}{l|l}
66 \\
6
\end{array}
\] & 2467 N & May \(17 \begin{array}{llllll}10 & 49 & 42\end{array}\) & 10205425 & & \\
\hline \[
\begin{aligned}
& 67 \\
& 68
\end{aligned}
\] & 2485 & \(\begin{array}{llllll}\text { May } & 27 & 18 & 33 & 2\end{array}\) & & 715 & \\
\hline 68 & 2503 & June 8 2 216162 & \(1 \begin{array}{llllll}11 & 54 & 19\end{array}\) & \(\begin{array}{lllll}7 & 12 & 17 & 391\end{array}\) & 1618 \\
\hline 69 & 2521 & June 18 ¢ 9 ¢9 42 & 1222417 & \(7{ }^{7} 9268161\) & \\
\hline 70 & 2539 & June 29.17438 & - \(2 \begin{array}{lllll} & 54 & 14\end{array}\) & 763453 & \(1 \begin{aligned} & 1 \\ & 1 \\ & 1\end{aligned} 52268\) \\
\hline 72 & 2557 & July 10112622 & \(0_{0}^{0} 1324\)\begin{tabular}{llll}
1 \\
\hline
\end{tabular} & \(7 \quad 34330\) & \\
\hline 73 & 2575 & July 219 & -23 548 & & \\
\hline 74 & 2593 & luly 311653 & 1424 & \(628 \quad 044\) & \\
\hline 742 & 2611 & \begin{tabular}{llll}
Aug. 12 & 0 & 36 \\
\hline
\end{tabular} & 11454 & & \\
\hline \[
\begin{array}{l|l}
75 \\
76 \\
21
\end{array}
\] & 29 A & Aug. \(22 \quad 8 \quad 1942\) & 1252355 & \(\begin{array}{llll}6 & 22 & 17\end{array}\) & \\
\hline 76
77
2 & 2647 S & \begin{tabular}{l}
Sept. \(216 \quad 3\) \\
Sopt. 122346
\end{tabular} & & & \\
\hline & & & 2162353 & \[
\begin{array}{lll}
\\
6 & 19 & 30 \\
\hline
\end{array}
\] & \(\left(\begin{array}{lllll}11 & 1 & 2 & 3 & 51 \\ 1 & 12 & 4 & 3 \\ \hline\end{array}\right.\) \\
\hline
\end{tabular}

TABLE III. The true Time of New Moon, with the Sun's true Diftance from the Moon's Afcending Node, and the Moon's true Latitude, at the true Time of each periodical Return of the Sun's Eclipfe, March \(21 / 1\), Old Stile, A.D. 1764, from the Time of its firft coming upon the Earth fince the Creation till it falls right againfl the Earth's Center.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & Irue jime of New Moon. & \multicolumn{3}{|l|}{Sun's true Ditt. from the Node.} & \multicolumn{4}{|l|}{Moon's true Latitude North.} \\
\hline & & Month.D.H. M S & s o & , & " & 0 & & & North. \\
\hline \(\bigcirc\) & 129 & ne 13 21215432 & 18 & 40 & 54 & 1 & 33 & 45 & \\
\hline 1 & 131 & une 24357 & 17 & 20 & 22 & 1 & 29 & 34 & \\
\hline 2 & 133 & July \(5104^{2}\) & - 16 & 29 & 35 & 1 & 25 & 20 & N. A. \\
\hline 3 & 1349 & July \(15 \begin{array}{llllll}5 & 17 & 14 & 16\end{array}\) & 15 & 34 & 18 & 1 & 20 & 45 & N. A. \\
\hline 4 & 13 (1) & July 266334924 & 14 & 46 & 8 & 1 & 16 & 39 & . A \\
\hline 5 & 1385 & Aug. 6164117 & 13 & 59 & 43 & 2 & 12 & 43 & N. A. \\
\hline 6 & 1403 & 3 Aug. \(17 \quad 13 \quad 32 \quad 15\) & 13 & 16 & 44 & 1 & 9 & 3 & N. A. \\
\hline 7 & 1421 & 1 Aug. 27203017 & - 12 & 37 & 4 & 1 & 5 & 42 & N. A. \\
\hline 8 & \(1+3\) & jicpt. \(8 \quad 35146\) & - 12 & 1 & 54 & 1 & 2 & 41 & N \\
\hline 9 & 145 & Sept. 18 10 23311 & \(\bigcirc 11\) & 30 & 27 & - & 58 & 53 & . \\
\hline 10 & 1475 & Sept. 291757 & 11 & 3 & 56 & \(\bigcirc\) & 57 & 43 & \\
\hline 11 & 149 & 3 Oct. 10144 & - 10 & 41 & 55 & 0 & 55 & 49 & \\
\hline 12 & 1511 & 1 Oct. 21929953 & - 10 & 25 & 11 & 0 & 54 & 28 & \\
\hline 13 & 1520 & Ort. \(31 \begin{array}{lllll} & 17 & 9 & 18\end{array}\) & - 10 & 11 & 27 & \(\bigcirc\) & 53 & 12 & \\
\hline 14. & & Nuv. 12 O 5125 & 10 & 1 & 10 & \(\bigcirc\) & 52 & 19 & \\
\hline 15 & & 5 Nov. 22855456 & - 9 & 52 & 49 & 0 & 51 & 46 & N. A. \\
\hline 16 & 158 & Dec. 3 & - 9 & 48 & & \(\bigcirc\) & 51 & 11 & A. \\
\hline 17 & 160 & 1 Dec. \({ }^{4} 40515\) & - 9 & 43 & 42 & \(\bigcirc\) & 50 & 49 & \\
\hline 18 & 1611 & Dec. 25 \& 5459 & - 9 & 40 & 23 & 0 & 50 & 31 & \\
\hline 19 & 163: & (Jan. \(44^{16} 56501 \mid\) & - 9 & 34 & 57 & 0 & 50 & 3 & \\
\hline 1 & 165 & (Jan. 1605441 & - 9 & 29 & 24 & 0 & 49 & 57 & \\
\hline 21 & & 4jan. 26 8 8 +8 24 & - 9 & 19 & 44 & & & 44 & \\
\hline 22 & & 2 Feb. 616 & - 9 & 8 & 58 & - & 47 & 49 & N. A. \\
\hline 23 & 1710 & 0 Feb. 17 O 8837 & - 8 & 54 & 20 & & & 44 & \\
\hline 24 & 1728 & 8 Feb. 2874340 & \(\bigcirc 8\) & 34 & 53 & O & 44 & 52 & \\
\hline 25 & \(17+6\) & 6 Mar. 10151433 & - 8 & 10 & 38 & \(\bigcirc\) & 42 & 46 & \\
\hline 5 & & \(4 \mathrm{Mar} .2022 \quad 3026\) & 07 & 42 & 14 & 0 & 40 & 18 & N. A. \\
\hline 27 & 178 & 3 Apr. 1 & 07 & 9 & 27 & 0 & 37 & 31 & N. A.
N. A, \\
\hline 28 & & Apr. 11123638 & 06 & 35 & 30 & - & 34. & 31 & N. A,
N. A. \\
\hline 29 & 1818 & Apr. 22192734 & & 51 & 48 & 0 & 30 & 43 & N. A. \\
\hline 30 & 1830 & 0 May 3. 2127 & 5 & 5 & 5 & & 6 & 40 & N. A. \\
\hline 31 & 185 & + May 14 85040 & 4 & 19
26 & 45 & & & 42 & N. A.
N. A. \\
\hline 32 & 1872 & & O \(\begin{aligned} & 0 \\ & 0\end{aligned}\) & 26 & & & & 4 & N. A. \\
\hline & & June 422 & \[
\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}
\] & \[
35
\] & & & & & N. A. \\
\hline & 19 & 6 June 26 6 11113.3 & o & 47 & 3 & 0 & & 10 & N. A. \\
\hline
\end{tabular}

On account of the difierences between the mean and true New Moons, and between the Sun's mean and true diftances from the Node, the Moon's fhadow falls even with the Earth's center two perinds fonerer in this Table than in the firf.

TABLE IV. The true Time of New Moon, with the Sun's true Difance from the Moon's Afending Norle and the Moon's true Latitude at each periodical Return of the Sun's Eclipi, March 21ft, Old Stalc, A.D. 1704. from its falling rigbt againft the Eartb's Center, till it funally leaves the Earth.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
0
\] & rue line of New Moon. & \[
\begin{aligned}
& \text { Sun's } \\
& \text { from }
\end{aligned}
\] & & & & & Sol & \\
\hline & & Month. D.H. M. S. & \(s \quad 0\) & & & & - & & South. \\
\hline 36 & 1944 & July \(6 \begin{array}{llllll} & 17 & 50 & 35\end{array}\) & 11829 & 55 & 28 & 0 & 0 & 24 & s. A. \\
\hline 37 & \(1{ }^{5} 62\) & July 18 O 031381 & 1189 & & 35 & & & & \\
\hline 38 & 1980 & July 28.7018531 & \(11 \quad 28\) & 11 & 32 & & 0 & 29 & S. A. \\
\hline 39 & 1998 & Aug. 81412221 & 1127 & 26 & 41 & & 13 & 25 & \\
\hline 40 & 2016 & Aug. 18211453 : & \(\begin{array}{ll}11 & 26\end{array}\) & \(4^{2}\) & 16 & - & 17 & 18 & S. A. \\
\hline \(4{ }^{1}\) & 2034 & Aug. 30425451 & 1126 & 2 & & & - 20 & 48 & S. A. \\
\hline \(4^{2}\) & 2052 & Sepr. 9 I1 45171 & \(11 \quad 25\) & 26 & \(4 t\) & - & - 23 & 53 & S. A. \\
\hline 43 & 2070 & Sept. \(201919 \begin{array}{llllll} & 26 & 1\end{array}\) & \(11{ }_{11} \quad 2+\) & 55 & & \(\bigcirc\) & - 20 & 39. & S. A. \\
\hline \(4+\) & 2088 & Oct. 1 & 11124 & 27 & 43 & \(\bigcirc\) & - 28 & \(59^{\circ}\) & S. A. \\
\hline 45 & 2106 & Oct. 12 in \(47 \begin{array}{lll}39 & 1\end{array}\) & 11.24 & 4 & & \(\bigcirc\) & - 31 & 26 & S. A. \\
\hline 46 & 2124 & & 1123 & 48 & & \(\bigcirc\) & 32 & 26 & S. \(A\). \\
\hline 47 & 2142 & Now. \(3{ }^{2} 5651911\) & \(11 \quad 23\) & 35 & 11 & \(\bigcirc\) & 33 & 53 & S. A. \\
\hline 48 & 2160 & Nov. 13 II 1120 & 23 & 22 & 22 & \(\bigcirc\) & 34 & 42 & S. A. \\
\hline 49 & 2178 & & 1123 & 18 & 5 & \(\bigcirc\) & 35 & - & S. A. \\
\hline 50 & 2196 & Dec. 5 4-4 911 & 1123 & 14 & 40 & & 35 & 22 & S. A. \\
\hline 51 & 2214 & Dec. 16 \begin{tabular}{llllll}
12 & 35 & 4 \\
\hline
\end{tabular} & 1123 & 10 & 43 & - & 35 & 43 & S. A. \\
\hline 52 & 2232 & Dec. 262029 911 & 1123 & 6 & & - & 36 & & S. A. \\
\hline 53 & 2251 & Jan. \(7 \times 54291\) & \(11 \quad 23\) & 4 & & - & 36 & 16 & S. A. \\
\hline 54 & 2269 & \(3 \mathrm{n} .17 \begin{array}{llllll}17 & 14 & 8\end{array}\) & 23 & - & & \(\bigcirc\) & 36 & 35 & S. A. \\
\hline & 2297 & Jan. 282243341 & II & 53 & & - & 37 & 10 & S. A. \\
\hline 56 & 2305 & Feb. 87878011 & II & + & & - & 37 & 59 & S. A. \\
\hline 57 & 232 & Feb. 1915 & 1122 & 31 & & \(\bigcirc\) & 39 & & S. \(A\). \\
\hline 5 & 2341 & Mar. 206 & \(11 \quad 22\) & 17 & 46 & - & 40 & 28 & S. A. \\
\hline 59 & 2359 & Mar. \(13 \quad 7 \quad 59171\) & 11 & 55 & 29 & - & - 42 & 9 & S. A. \\
\hline 60 & 2377 & Mar. 231551591 & 11 & 39 & 40 & - & - 43 & 41 & S. A. \\
\hline 61 & 2395 & Apr. \(3=34571\) & 11 & & & - & 46 & 58 & S. A. \\
\hline 62 & 2413 & Apr. \(14 \quad 7 \quad 32401\) & 11 & 26 & 22 & - & 4.9 & 48 & S. A. \\
\hline 6 & 2431 & & 1119 & 47 & 34 & - & 53 & 17 & S. A. \\
\hline 64 & 2449 & May \(\begin{array}{lllllllll} & 22 & 45 & 14\end{array}\) & 119 & 6 & 22 & - & \({ }_{5} 6\) & 50 & S. A. \\
\hline 65 & 246; & May \(17 \quad 617\)\begin{tabular}{llll}
\\
\hline
\end{tabular} & 1118 & 21 & 16 & 1 & & 40 & S. A. \\
\hline 66 & 2485 & & 1117 & 34 & 20 & & & 42 & S. A. \\
\hline & 2503 & June 72110311 & 1116 & 43 & 17 & & & & S. A. \\
\hline & 2521 & June 18424 \begin{tabular}{llllll}
\\
\hline
\end{tabular} & 1115 & 51 & & & 13 & 26 & S. A. \\
\hline 69 & 2539 & June 2911158461 & 115 & 5 & & & 17 & & S. A. \\
\hline 70 & 2557 & July \(9101924 \begin{array}{lll}1\end{array}\) & 1114 & & & & 2 & & S. A. \\
\hline 71 & 2575 & uly 21 \begin{tabular}{llllll}
& 5 & 3 \\
\hline
\end{tabular} & 1113 & & & & 26 & & S. A \\
\hline 72 & & July \(31110.253^{11}\) & & & & & & & \\
\hline & 2611 & Aug. 111758391 & 1111 & & & & 36 & & S. \\
\hline
\end{tabular}

By the true Motions of the Sun, Moon, and Nodes, thas Eclipte goes of the Eath four Periods fooner than it would have done by mean equable Miotions.

From Mr. G Smith \({ }^{\text {s }}\) Differtarion on Eclipres, printed at Lonton, by E. Cave, in the year 1748.
"To illuftrate this a little farther, we Mall exa" mine fome of the moft remarkablecircumftances " of the returns of the Eclipfe which happened " 7 uly 14,1748 , about noon. This Ecliple, after "traverfing the voids of fpace from the Creation, "at laft began to enter the Terra Auforalis Incog"sita, about 88 years after the Conquelt, which "was the laft of King Sterhen's reign; every "Cbaldean* period it has crept more northerly, "but was ftill vifible in Britain before the year "1622; when on the 3orh of April it began to "touch the fouth parts of England about 2 in the "a afternoon: its central appearance rifing in the "American South Seas, and traverfing Peru and " the Amazon's country, through the Allantic ocean "into.Africa, and fecting in the Etbiopian conti" nent, not far from the beginning of the Red Sea.
"Its next vifible period was after three Cbaldeain "revolutions in 1676 , on the firft of "fune, rifing "central in the Atlantic ocean, paffing us abour " 9 in the morning, with four \(\dagger\) Digits eclipfed on "the under limb; and fetting in the gulph of Co"chinctina in the Eaft Indies.
"It being now near the Solftice, this Eclipfe "was vifible the very next recurn in 1694 , in the "evening; and in two periods more, which was " in 1730, on the 4th of \(y u l y\), was feen above half "eclipfed jut after Sun-rile, and obferved borh "at Wittemberg in Germany, and Pekin in Cbina, "foon after which it went off.
"Eighteen years more afforded us the Eclipfe "which fell on the 14 th of 7 ful 1748 .
"The next vifible return will happen on fuly ' 25,1766 , in the evening, about four Digits "eclipfed; and after two periods more, on Auguft
- The above period of 18 years in days 7 hours 43 minutes 20 feconds, which was found ous by the Chaldeans, and by them called Saros.
\(\dagger\) A Digit is a twelfth part of the diameter of the Sun or Moon.
" 16 th, 1802 , early in the morning, about five "Digits, the center coming from the north frozen "continent, by the capes of Norizay, through "Tartary, Cbina, and Fapan, to the Ladrone "inands, where ir goes:off.
"Again, in 1820, Auguft 26, betwixt one and " \(t w o\), there will be another great Eclipfe at. London, "about Io Digits; but happening fo near the "Equinox, the center will leave every part of "Britain to the Weft, and enter Germany at Emb«den, paffing by Venice, Naples, Grand Cairo, and "fet in the gulph of Bafora near that city.
"It will be no more vifible till 1874 , when five "Digits will be obfcured (the center being now "about to leave the Earth) on September 28. In " I892 the Sun" will go down eclipfed at London, "and again in 1928 the paffage of the center will "be in the expanjum, though there will be two "Digits eclipfed at London, October the 3 ift of "that year; and about the year 2090 the whole "Penumbra will be wore off; whence no more "returns of this Eclipfe can happen till after a re"volution of 10 thoufand years.
"From thefe remarks on the intire revolution " of this Eclipfe, we may gather, that a choufand "years, more or lefs (for there are fome irregula"rities that may protract or lengthen this period " 100 years), complete the whole terreftrial Phe" nomena of any fingle Eclipfe: and fince 20 pe"riods of 54 years each, and about 33 days, com"prehend the entire extent of their revolution, it " is evident that the times of the returns will pafs "through a circuit of one year and ten months, "every Cbaldean period being ten or eleven days "later, and of the equable appearances about 32 "or 33 days. Thus, though this Eclipfe happens " about the middle of \(\mathcal{F u l y}\), no other fubfequent "Eclipfe of this period will return to the middle "of the fame month again; but wear, conitantly "each period 10 or I I days forward; and at laft
"s appear in Winter, but then it begins to ceale " from affecting us.
"Another conclufion from this revolution may "be drawn, that there will feldom be any more "than two great Eclipfes of the Sun in the interval "of this period, and thefe follow fometimes next "recurn, and often at greater diftances. That of " 1715 returned again in 1733 very great; but "this prefent Eclipfe will not be great till the "arrival of \(18: 0\), which is a revolution of four "Cbaldean periods: fo that the irregularities of "their circuits muft undergo new computations "to affign them exactly.
"Nor do all Eclipfes come in at the fouth Pole:
"t that depends altogether on the pofition of the "lunar Nodes, which will bring in as many from "she expanfum no way as the other: and luch "Eclipfes will wear more foutherly by degrees "contraty to what happens in the prefent cafe.
\[
\text { "The Eclipfe, for example, of } 1736 \text {, in Sep- }
\] "tember, had its center in the expanfum and fet "about the middle of its obfcuricy in Britain: it "will wear in at the North Pole, and in the year " 2600 , or thereabout, go off in the expanfum on "the fouth fide of the Earch.
"The Eclipfes therefore which happened about "the Creation are litule more than half way yet " of their ethereal circuit ; and will be 4000 years "before they enter the Earth any more. This "grand revolution feems to have been entirely " unknown to the ancients. prefent Tables agree mot uith ancient ob Servations.
322. "It is particularly to be noted, that Felipfes "which have happened many centuries ago, will " not be found by our prefent Tables to agree ex"actly with ancient obfervations, by reaton of "the great Anomalies in the lunar motions; which "appears an inconteftible demonftration of the "bun-eternity of the Univerfe. For it feems con"firmed by undeniable proofs, that the Moon now "s finifhes her period in lefs time than formerly,
"r and will continue by the centripetal law to ap"proach nearer and nearer the Earth, and to go "fooner and fooner twind it: nor will the centri" fugit power be fufficient to compenfate the dif"ferent gravitations of fuch an affemblage of bo"dies as conflitute the folar fyAtem, which would "come to ruin of itfelf, without frme new regula"tion and adjuftment of their original motions*. 32 2. "We are credibly informed from the tefti"mony of the ancients, that there was' a total

Thates's Ecliple. "Eclipfe of the Sun predicted by Thales to hap"pen in the fourth year of the 48 th \(\dagger\) Olympiad, "either
* There are two ancient Eclipfes of the Moon, recorded by Ptolemy from Hipparcbus, which affurs an ondeniable proof of the Mloon's acceleration. The firt of toefe was obferved at Babylon, December the 22 d , in the jear b-fore ChrisT 383 : when the Moon began to be eclipfed abour half an nour before the Sun rofe, and the Eclinfe was nat over wefore the Moon fet: but by moft of our Ahronornical Tables, the Mioon was fet at Bubylon half an hour before the Ecliple began; in which cafe, inere could have been no pofibility of ntferving it. The fecond Ecl'pre was obferved at Alcxandrin. S.prember th.e 22d, the year before Christ 201: where the Mo:m ole fo much eclipied, hat the Eclipfe mult have begun abouchalf an hour beiore fhe rofe: whereas, by moft of our Tubtes, the beginning of this Ecl:pfe was not till abont ten minutes afier the Moon rofe at Alexandria Had thele Ecliples begun and ended while the Sun was below the forizon, we might have imagined, that as the ancients had no certa,n way of metfuring time, they might have been fof far miftaken in the hours, that we could not have laid any flrefs on the accounts given by them. But, as in the firt Eclipfe the Moon was fer, and confequencly the Sun rifen, before it was over; and in the fecond Ecliple the Sun was fet, and the Moon not rifen, wh fomenne after it began: thefe are fuch circumftances as the obfervers could not pofibly be miftaken in. Mr. Striyk, in the following Catalcgup, notwithfanding the exprefs words of Plolemy, puts down thele two Eclipfes as obferved at Atbens; where they might have been feen as above, without any acceleration of the Moon's motion: Atbens being 20 degrees Weft of Babylon, and 7 degrees Welt of Alexandria.
\(\dagger\) Each Olympiad began at the time of Full Moon next after the Summer solitice, and laft d four vears, which were of unequal lengths, becaufe the time of Full Moon differs in days every year: fo that they might fometimes begin on the next
"either at Sardis or Miletus in Afia, where Thales "then refided. That year correfponds to the " 585 th year before Chrift; when accordingly "there happened a very fignal eclipfe of the Sun, "on the 28th of May, anfwering to the prefent " roth of that month *, central through North "America, the South parts of France, Italy, \&xc. as "far as Atbens, or the Ines in the Agean Sea; " which is the fartheft that even the Caroline Tables "carry it; and confequently make it invifible to " any part of Afia, in the total character; though "I have good reafons to believe that it extended "to Babylon, and went down central over that city. "We are not however to imagine, that it was fet
day after the Solfice, and at other times not till four werks after it. The firft Olympiad began in the year of the Julian Period 3938, which was 776 years before the firt year of CHRIST, or 775 before the year of his birth; and the laft Olympiad, which was the 293d, began A.D.393. At the expiration of each Olympiad, the Olmpic Games were celebrated in the Elean fields, near the river Alpheus in the Peloponnefus (now Morea) in honour of Jupiter Olympus. See Strauchius's Breviariunt Cbronologicum, p. 247-251.
* The reader may probably find it dificult to underfland why Mr. Smith fhould reckon this Eclipfe to have been in the 4th year of the 48 th Olympiad, as it was only in the end of the third year: and alfo why the 28 th of May, in the 585 th year before Christ, thould aniwer to the prefent loth of that month. But we hope the following explanation will remove thefe difficulties.

The month of May (when the Sun was eclipfed) in the \(5_{5}{ }^{\text {th }}\) year before the firft year of CHR1sT, which was a leap-year, fell in the latter end of the third year of the 48 th Olympiad; and the fourth year of that Olympiad began at the Summer Solftice following: " but perhaps Mr. Smith begins the year of the Olympiad from fanuary, in order to make them correfpond more readily with \(\mathcal{f} u l i a n\) Years; and fo reckons the month of May, when the Eclipfe happened, to be in the fourth year of that Olympiad.

The Place or Longitude of the Sun at that time was \(\begin{array}{r} \\ 29^{\circ}\end{array}\) \(43^{\prime} 17^{\prime \prime}\), to which fame place the Sun returned (after 2300 years, viz.) A.D. 1716 , on May \(9^{d} s^{h}(\mathbb{m}\) after noon: fo that, with rerpect to the Sun's place, the gth of May 1716, anfwers to the 28th of May in the 585 th year before the firf year of Christ; that is, the Sun had the fame Longitude on both thufe days.
"before it pafied Sardis and the Afiatic towns, " where the predictor lived; becaufe an invifible "Eclipfe could have been of no fervice to demon"ftrate his ability in Aftronomical Sciences to his "countrymen, as it could give no proof of its reality.
324. "For a further illuftration Thucydides "relates that a folar Eclipfe happened on a Sum"mer's day in the afternoon, in the firft year of "the Peloponnefian war, fo great, that the Stars ap"peared. Rhodius was victor in the Olympic "games the fourth year of the faid war, being alfo "the fourth of the 87 th Olympiad, on the 428 th "year before Christ. So that the Eclipfe muft "have happened in the 43 Ift year before CHRIST ; " and by computation it appears, that on the 3 d " of Auguft there was a fignal Eclipfe which would "have paffed over Albens, central about 6 in the "evening, but which our prefent Tables bring no "farther than the ancient Syrtes on the African "coaft, above 400 miles from Atbens; which "fuffering in that cafe but 9 Digits, could by no "means exhibit the remarkable darknefs recited " by this hiftorian; the center therefore feems to "have paffed Atbens about 6 in the evening, and "probably might go down about ferufalem, or "near it, contrary to the conftruction of the pre"fent Tables. I have only obviated thefe things "by way of caution to the prefent Aftronomers, "in re-computing ancient Eclipfes; and refer them "to examine the Eclipfe of Nicias, fo fatal to the "Athenian fieet*; that which overthrew the Ma"cedonian Army t, Esc." So far Mr. Smith.
325. In any year, the number of Eclipfes of both Luminaries cannot be lefs than two, nor more than

The number of Eclip ses. feven; the moft ufual number is four, and it is very rare to have more than fix. For the Sun paffes by both the Nodes but once a year, unlefs

ThucyDines' Eclipfe.
he paffes by one of them in the beminning of the year; and if he does, he will pafs by the fane Node again a little before the year be finifhel; becaufe as thefe points move \(199_{3}^{i}\) degrees rackward every year, the Sun will come to either uf them I 7.3 days after the other, 3 I9. And when eibher Node is within 17 degrees of the Sun it the tine of New Moon, the Sun will be eclipferl. At the fubfequent oppofition, the Moon will be eclipfed in the uther Node; and come round to the next conjunction again ere the former Nude be 77 degrees paft the Sun, and will therefore eclipfe him again. When three Eclipfes fall about either Node, the like number generally falls about the oppofite; as the Sun comes to it in 173 days afterward; and fix Lunations contain but four days more. Thus there may be two Ëcliples of the Sun and one of the Moon about each of her Nodes. But when the Moon changes in either of the Nodes, fhe cannot be near enough the other Node at the next Full to be eclipled; and in fix lunar months afterward the will change near the other Node: in thefecafes there can be but two Eclipfes in a year, and they are both of the Sun.
326. A longer period than the above mentioned, \(\$ 320\), for comparing andexamining Ecliples which happened at long intervals of time, is 557 years 21 days 18 hours 30 minutes if feconds, in which time there are 6890 mean Lumations: and the Sun and Node meet again fo nearly as to be but in feconds diftant; but then it is not the fame Eclipfe that returns, as in the fhorter period above mentioned.
327. We Thall fubjoin a catalogue of Eclipfes recorded in hiftory, from 721 years before CHRIST to A. D. 1485 ; of compuied Eclipfes from 1485 to 1700 ; and of all the Eclipfes vifible in Europe flom 1700 to 1800 . From the beginning of the Catalogue to \(A, D .1435\), the Eclipfes are taken from Struyk's Introduction to univerfal Geograploy,
as that indefatigable aurhor has, with much labour, collected them from Ptolemy, Tbucydides, Plutarch, Calvifus, Xenophon, Dicdorus Siculus, Fufin, Polybius, Titu: Livius, Cicera, Lucanus, Theophanes, Di-

An account of the tollowing Catalogue of Eclipfes. on Cafius, and many others. From 1485 to 1700 the Eciipfes are taken from Ricciolus's Almageft: and from 1700 to 1800 from L'Art de verifier les Dates. Thofe from strugk have all the places mentioned where they were oblerved: Thofe from the French authors, viz. che religious Benedictines of the congregation of St. Mour, are fitted to the Meridian of Paris: And concerning thofe from Ricciolus, that author gives the following account:
"Becaufe it is of great ufe for fixing the Cycles or Revolurions of F.ciipfes, to have at hand, without the trouble of calculation, a lift of fucceffive Ecliples for many years, computed by authors of Ephemerides, although from Tables not perfect in all refpects, I hall, for the benefit of Afronomers, give a fummary collection of fuch. The authors I extratt from are, an anonymous one who publifhed Ephomerides from 1484 to 1506 inclufive: Jacobus Ptlaumen and Fo. Staflerinus, to the Meridian of UTm, from 1507 to 1534: Lucas Geuricies, to the Latitude of 45 degrces, from 1534 to 1551: Peter Appian, to the Meridian of Leejing , from 1538 to 1578: Fo. Stafleras, to the Nieridian of Tubing, froin 1543 to 1554 : Petrus Pilatus, to the Meridian of Venice, from 1544 to 1556: Georgius Foacbimus Rbeticus, for the year 155: Nicbolus Simus, to the Meridian of Bologna, firon 1552 to 1568 : Micbael Maflin, to the Meridian of Tubing, from 1557 to I 590: \%o. Stadius, to the Merician of Antwerp, from 1554 to 1574: Yo. Antoninus Maginus, to the Meridian of Vcnice, from 158 I to 1630 : David Origan, to the Meridian of Firanckfort on the Oder, from 1595 to \(16: 4\) : Aindreev Argol, to the Meridian of Rome, from 1630101700 : Francifus Montebrunus, to the Meridian of Bologna, from 146 r to 1660: Among which, Stadius, Masflin, and Ma-
ginus, ufed the Prutenic Tables; Origin the Prutenic and Tycbonic; Montebrunus the Lanfoerginn, as likewife thofe of Durat. A Imoft all the reft the Alphonfine.
But that the places may readily be known for whici thefe Eclipfes were computed, and from what Tables, confult the following Litt, in which the years inclufive are alfo fet down.

From To
14851506 The place and author unknown.
15071553 Ulim in Suabia, from the Alpponfine.
15541576 Antwerp, from the Prutenic.
15771585 Tubing, from the Prutenic.
15861594 Venice, from the Prutenic.
15951600 Franckfort on the Oder, from the Prutenic.
1601 1640 Franckfort on the Oder, from the \(T_{y}\) chonic.
16411660 Bologna, from the Lanfoergiom. 1661 1700 Rome, from the Tycbonic."

\section*{So far Ricciolus.}
N. B. The Eclipfes marked with an Aiterifk are not in Ricctolus's Catalogue, but are fupplied from L'Art de verifier les Dates.

From the beginning of the Catalogue to \(A . D\). 1700, the time is reckoned from the noon of the day mentioned to the noon of the following day: but from 1700 to 1800 the time is fet down according to our common way of reckoning. Thofe marked Pekin and Canton are Eclipfes from the Cbinese chronology according to STruyk; and throughout the Table this mark fignifies Sum, and this 1 Moon.

Struyk's Catalogue of ECLIPSES.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\overline{\text { bet. }}
\]
\[
\mathrm{Chr} .
\] & Eclipfes of the Sun and Moon feen at & & & \& D. & \(\left\lvert\, \begin{aligned} & \text { Middt } \\ & \mathrm{H} . \mathrm{M} \text {. }\end{aligned}\right.\) & \[
\left\lvert\, \begin{aligned}
& \text { Digits } \\
& \text { eclipfed }
\end{aligned}\right.
\] \\
\hline 721 & Babylon & D & & March 19 & \(10 \quad 34\) & Total \\
\hline 720 & Babylon & & & March 8 & \(115^{6}\) & 15 \\
\hline 720 & Babylon & & & ept. 1 & 1018 & \\
\hline 621 & Babylon & & & April 21 & 1822 & 230 \\
\hline \(52 ;\) & Babylon & & & uly 16 & 1247 & 724 \\
\hline 50: & Babylon & & & Nov. 19 & \(12 \begin{array}{ll}12 & 1\end{array}\) & \(1 \quad 52\) \\
\hline 49 & Babylon & & & April 25 & 12 & l 44 \\
\hline 431 & \(\therefore\) chens & & & ug. 3 & 6 & \(11 \quad 0\) \\
\hline 425 & Athens & & & at. 9 & \(6 \quad 45\) & Total \\
\hline 424 & Athens & \% & & Iarch 20 & \(20 \quad 17\) & \(9 \quad 0\) \\
\hline 413 & Athens & D & & ug. 27 & \(10 \quad 15\) & Total \\
\hline 406 & Athens & D & & pril 15 & \(8 \quad 50\) & Total \\
\hline 104 & Athens & \(\bigcirc\) & & ept. 2 & 21.12 & \(8 \quad 40\) \\
\hline 403 & Pekin & & & ug. 28 & \(5 \quad 53\) & \(10 \quad 40\) \\
\hline 397 & Gnide & \% & & ug. 13 & 2217 & 110 \\
\hline 383 & Athens &) & & Dec. 22 & 196 & 1 \\
\hline 382 & Athens & D & & une 18 & 854 & 6.15 \\
\hline 382 & Achens & & & Dec. 12 & 10 & Total \\
\hline \(3^{6}{ }_{4}\) & 「hebes & ¢ & & uly 12 & \(23 \quad 51\) & \(6 \quad 10\) \\
\hline 357 & Syracufe & \% & & eb. 28 & 22 - & \(\begin{array}{ll}3 & 33\end{array}\) \\
\hline 357 & Zant & & & ug. 29 & \(7 \quad 29\) & 4.21 \\
\hline 340 & Zant & \% & & epi. 14 & 18 - & \(9 \quad 0\) \\
\hline 331 & Arbela & D & & ept. 20 & 10 & Total \\
\hline 310 & Sicily lland & & & ug. 14 & 20 & 10 \\
\hline 219 & Myfia & D & & March 19 & 14 & Total \\
\hline 218 & Pergamos & & & ept. 1 & rifing & Total \\
\hline 217 & Sarcionia & & & eb. 11 & 157 & 96 \\
\hline 203 & Frufini & \% & & ay 6 & \(2{ }^{2}\) & \(5 \quad 40\) \\
\hline 202 & Cumis & & & ct. 18 & \(22 \quad 24\) & 1 O \\
\hline 201 & Athens & & & ppt. 22 & 714 & \(85^{8}\) \\
\hline 200 & Athens & & & arch 19 & \(13 \quad 9\) & Total \\
\hline 200 & Athens & D & & pt. 111 & 14 48 & Total \\
\hline 198 & Rome & & & ug. 6 & & \\
\hline 190 & Rome & \(\bigcirc\) & & arch 1318 & 18 & 110 \\
\hline 188 & Rome & & & uly 36 & \(20 \quad 38\) & 1048 \\
\hline 174. & Athens & D & & pril 301 & 1433 & \\
\hline 168 & Macefonia & D & & ane 21 & 14 8 & Total \\
\hline 141 & R hodes & & & In. 271 & 10 & \\
\hline \(\mathrm{IO}_{4}\) & Rome & & & ly 182 & 22 & 11-52 \\
\hline 63 & Rome & & & ct. 27 & \(6 \quad 22\) & Total \\
\hline 60 & Gibraltar & \% & & arch 16 & fetting & Central \\
\hline 54 & Canton & \(\bigcirc\) & & ay 9 & \[
\left.\begin{array}{|cc|}
& 31
\end{array} \right\rvert\,
\] & Total \\
\hline 51 & Rome & \% & & arch 7 & 2 & 90 \\
\hline 43 & Rome & & & n. 181 & 10 & Total \\
\hline & Rome & D & & ov. 61 & 14 - & Total \\
\hline & Rome & & & av 19 & \(3{ }^{3} 5\) & \\
\hline
\end{tabular}

\section*{Of Eclipies.}

Struyk's Catalogue of ECLIPSES.

\section*{Of Eclipfes.}

Struyk's Catalogue of ECLIPSES.

Struyk's Catalogue of ECLIPSES.

Struyk's Catalogue of ECLIPSES.

Struyk's Catalogue of ECLIPSES.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\overline{\mathrm{Aft}} \mathrm{Chr} .
\] & Eclipfes of the Sun and Moon feen at & & & \[
\text { I. \& D. }\left.\right|_{\substack{M i \\ H}} ^{\substack{\text { in }}}
\] & \begin{tabular}{l}
Middle \\
H. M.
\end{tabular} & \[
\left\lvert\, \begin{gathered}
\text { Digits } \\
\text { eclipied }
\end{gathered}\right.
\] \\
\hline 1154 & Paris & D & & ec. 21 & 30 & \\
\hline 1155 & Auranches & D & & June 16 & \(8 \quad 45\) & - 53 \\
\hline 1160 & Rome & D & & ug. 188 & \(7 \quad 53\) & \(6 \quad 49\) \\
\hline 1161 R & Rome & D & & ug. 78 & 8 11 & Total \\
\hline 1162 & Erfurd & & & b. \(\quad 1\) & 640 & 5 \\
\hline 1162 & Erfurd & & & uly 2712 & \(12 \quad 30\) & \begin{tabular}{l}
4 \\
4 \\
\hline
\end{tabular} \\
\hline 1163 & Mont Caffin & & & uly 3 & 740 & 20 \\
\hline 1164 & Milan & & & une 610 & & Total \\
\hline 1168 L & London & & & ept. 181 & & Total \\
\hline 1172 & Cologne & & & an. 1113 & & Total \\
\hline 1176 & Auranches & & & pril 25 & & \(8 \quad 6\) \\
\hline 1176 & Auranches & & & ct. 191 & & \(8 \quad 53\) \\
\hline 1178 & Cologne & & & March 5 fe & fetting & \(7 \quad 52\) \\
\hline 1178 & Auranches & & & ug. 291 & \(13 \quad 52\) & \begin{tabular}{ll}
5 & 31 \\
\hline
\end{tabular} \\
\hline 1178 & Cologne & & & ept. 12 & & 10 \\
\hline 1179 & Cologne & & & ug. 181 & 1428 & Total \\
\hline 1180 & Auranches & & & an. 28 & 414 & \(10 \quad 34\) \\
\hline [1181 & Auranches & & & aly 13 & & \(34^{8}\) \\
\hline 11881 & Auranches & & & ec. 22 & \(8 \quad 58\) & \(4 \quad 40\) \\
\hline 1185 & Rhemes & & & May & 153 & 90 \\
\hline 1186 & Cologne & & & pril & & Total \\
\hline 1186 & Franckfort & & & pril 20 & & \(4{ }^{4}\) \\
\hline 1187 & Paris & & & March 25 & \(16 \quad 17\) & \(8 \quad 42\) \\
\hline 1187 & England & & & ept. \(3^{2}\) & 2154 & \\
\hline 1189 & England & & & eb. \(\quad 210\) & 10 & 9 \\
\hline 1191 & England & & & une 23 & - 20 & 1132 \\
\hline 1192 & France & & & Nov. 201 & 14 & \\
\hline 1193 & France & & & Nov. 10 & \(5 \quad 27\) & Total \\
\hline 1194 & London & & & pril 22 & 215 & 649 \\
\hline 1200 & London & & & an. 211 & & \(4 \quad 35\) \\
\hline 1201 & London & & & une 17/1 & 15 & Total \\
\hline 1204 & England & & & pril 151 & 12. 39 & Total \\
\hline 1204 & Saltrburg & D & \(D \mathrm{O}\) & ct. 10 & 632 & Total \\
\hline 1207 & Rhemes & \% & & eb. 271 & 1050 & \(10 \quad 20\) \\
\hline \(1208 \mid\) & Rhemes & & & eb. 2 & \(5 \quad 10\) & Total \\
\hline 1211 & Vienna & & & Nov. \(21{ }^{1}\) & 1357 & Total \\
\hline 1215 & Cologne & \& & & March 161 & 1535 & Total \\
\hline 1216 & Acre & & & eb. 182 & & 1136 \\
\hline 1216 & Acre & & & March 5 & 928 & \\
\hline 1218 & Damićta & & D) J & uly 9 & 946 & 1131 \\
\hline 1222 & Rome & & D O & ot. 221 & \(14 \quad 28\) & Total \\
\hline 1223 & Colmar & & & April 16 & 813 & 110 \\
\hline 1228 & Naples & & a D & Dec. 27 & 955 & \\
\hline (1230 & Naples & & \% & May 131 & 17 & Total \\
\hline 1230 & London & & D N & Nov. 211 & 1321 & \(9 \quad 34\) \\
\hline 12,2 & Rhemes & & O & Oct. 15 & 420 & 425 \\
\hline
\end{tabular}

STRUYk's Catalogue of ECLIPSES.

\section*{Of Eclipfes.}

STRUYK's Catalogue of ECLI PSES.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|c|}
\text { Atc. } \\
\text { Chr. }
\end{array}
\] & Ecliples of the Sun and Moon feen at & & M. \& D & \[
\text { D. }\left.\right|_{\mathrm{H}} ^{\mathrm{M}}
\] & \[
\begin{aligned}
& \text { Mid } \\
& \mathrm{H} .
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{ddlt} \\
\mathrm{M} .
\end{gathered}
\] & \[
\begin{aligned}
& \text { Digits } \\
& \text { eclipfer }
\end{aligned}
\] \\
\hline 1333 & Wittemburg & & May 14 & 14 & & & \(10 \quad 18\) \\
\hline 1334 & Cefena & D & April 19 & 1910 & 10 & & Total \\
\hline 1341 & Conftantinople & D & Nov. 23 & \({ }_{23} 12\) & 12 & & Toral \\
\hline 1341 & Conflantinople & \% & Dec. & 8122 & 22 & & \(6 \quad 30\) \\
\hline 1342 & Conftantincple & D & May 20 & 2014 & & & Total \\
\hline 1344 & Alexandria & \% & Oet. & 618 & 18 & & \(8 \quad 55\) \\
\hline 1349 & Wittemburg & D & June 30 & 3012 & 12 & & Total \\
\hline 1354 & Wittemburg & & Sept. 16 & 1620 & 20 & & \\
\hline 1356 & Plorence & & Feb. 1 & 1611 & 11 & & Tutal \\
\hline \({ }_{1} 3^{61}\) & Conftantinople & & May & 422 & 22 & & \(8 \quad 51\) \\
\hline 1367 & Sienna & & Jan. 1 & 168 & & & Total \\
\hline 1389 & Evgibio & & Vov. & \[
3 \mid 17
\] & 17 & & lotal \\
\hline 1396 & Augfourgh & & Jan. 1 & & & & \(6 \quad 22\) \\
\hline 1396 & Augfourgh & & June 2 & 211 & 11 & & Total \\
\hline 1399 & Forli & & Oct. 2 & 29 & & & 9 - \\
\hline 1406 & Conflantinople & & June & 11 & 13 & & \(10 \quad 31\) \\
\hline 1406 & Conflantinople & & June 1 & 1518 & 18 & & 11138 \\
\hline 1408 & Forli & & Oct. \({ }^{1}\) & 182 & 21 & & \(7{ }^{9} \quad 32\) \\
\hline \(140 ;\) & Conflantinople & & April 1 & 15 & & & 1048 \\
\hline 1410 & Vienna & & March 2 & 201 & 13 & & Total \\
\hline 1415 & Wittemburg & & June & & & & Total \\
\hline 1419 & Franckfort & & March 2 & 2522 & 22 & & \(1 \quad 45\) \\
\hline \(14^{21}\) & Forli & & Feb. 1 & 17 & - & & Total \\
\hline 1422 & Forli & & Feb. & 0 & 8 & & 11 \\
\hline 1424 & Wittemburg & & June 2 & 26 & & & 11 \\
\hline 1431 & Forli & & Feb. 1 & 12 & 2 & & 139 \\
\hline 1433 & Wittemburg & & June 1 & 17 & 5 & & Total \\
\hline 1438 & Wittemburg & & Sept. 1 & 1820 & & & 87 \\
\hline 1442 & Rome & & Dec. 1 & 17 & & & Total \\
\hline 1448 & Tubing & & Aug. & 282 & 22 & & S 53 \\
\hline 1450 & Conftantinople & &) July & 24 & & & Total \\
\hline 1457 & Vienna & & Sept. & 31 & & & Total \\
\hline 1460 & Auftria & & D July & & & & \(1 \begin{array}{lll}5 & 23\end{array}\) \\
\hline 146. & Aufria & & July & 171 & 17 & & 2115 \\
\hline 1460 & Vienna & & D Dec. & 271 & 13 & & - Total \\
\hline 1461 & Vienna & & D June & 221 & 11 & & - Total \\
\hline 1461 & Rome & & D Dec. & 17 & & & Total \\
\hline \(14^{\prime} 2\) & Viterbo & & D June & 1115 & & & \(7 \quad 38\) \\
\hline 1462 & Viterbo & & 5 Nov. & 21 & 0 & & 2 \\
\hline 14.64 & Padua & & D April & 211 & 12 & & Total \\
\hline 1465 & Rome & & Sept. & 20 & & & 846 \\
\hline 1465 & 5 Rome & & D Oct. & 4 & 5 & & 2 Total \\
\hline 1469 & 9 Rome & & D Jan. & 27 & 7 & & 9 Total \\
\hline 1485 & \({ }_{5}\) Nurimburg. & & March & 181 & 3 & & \(3 / 11\) \\
\hline
\end{tabular}

All the following E. CLIPSES are taken from Roccrocus, except thole marked with an Afterifk, which are from L'Art de verifier les Dates.

Ricciolus's Catalogue of ECLIPSES.

Ricciolus's Catalogue of ECLIPSES.

Riccrolus's Catalogue of ECLIPSES.

Ricciolus's Catalogue of EC.L.IPSES.

Ricfrolus's Catalogue of ECLIPSES.

Ricciolus's Catalogue of ECLIPSES.

The Eclipfes from Struyk were obferved; thofe from Ricciolus calculated: the following from L'Art de verifier les Dates are only shofe which are vifible in Europe for the prefent century: thofe which are toial are marked with a \(T\); and \(M\) fignifies Morring, A Afternoon.

Vifible ECLIPSES from 1700 to 1800.

Vifible ECLIPSES from 1700 to 1800 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chr. & & \[
\begin{gathered}
\text { Months } \\
\text { and } \\
\text { Days. }
\end{gathered}
\] & Time of the Day or Night. & Aft. Chr. & & & \[
\begin{gathered}
\text { Months } \\
\text { and } \\
\text { Days. }
\end{gathered}
\] & & Time the Day or Night. \\
\hline 22 & & & 110 A.T. & & & & & & \\
\hline 1733 & \% & May & 37 A . & 1764 & & & ril & 6 & M \\
\hline 1733 & & D May & 87 A . & 1765 & & & March & & 2 A. \\
\hline 1735 & & Oct. & 1 M . & 1765 & & & Aug. & & 5 A. \\
\hline 1736 & & March & 212 A , T. & 1766 & & & eb. & 4 & 7 A . \\
\hline 1736 & &) Sept. & 3 З.Т. & 1766 & & & Aug. & & 7 A. \\
\hline 17 & & Oct. & 46 A . & 1768 & & & Jan. & & 5 M \\
\hline 17 & & March & 4 A . & 1768 & & & June & 0 & 4 M.T. \\
\hline 1737 & & \(1)\) Sept. & 4 M . & 1768 & & & Dec. & & 4 A. T. \\
\hline 1738 & & Aug. & 511 M . & 1769 & & & June & & 8 M . \\
\hline 1739 & & J Jan. & 2411 A. & 1769 & & & Dec. & & 7 M . \\
\hline 17 & & Aug. & 5 A. & 1770 & & & Nov. & & 10 M . \\
\hline 17 & & Dec. & 309 M . & 1771 & & & April & & 2 M . \\
\hline 17 & & Jan. & 311 A.T. & 1771 & & & Oct. & & 5 A. \\
\hline 1741 & & Jan. & 112 A . & 1772 & & & Oa. & & 6 A. \({ }^{\text {\% }}\). \\
\hline 17 & & Nov. & 3 М.Т. & 1772 & & & Oct. & & 10 M . \\
\hline 1744 & D & D Aug. & 20.9 A. & 1773 & & & March 2 & & 5 M \\
\hline 1746 & & 4 lug . & 3012 A . & 1773 & & & Sept. & & 7 A. \\
\hline 17 & & Feb. & 75 M. T. & \({ }^{1} 774\) & & & March & & 10 M. \\
\hline 17 & & July & 511 M . & 1776 & & & July & & \(1 \mathrm{M} . \mathrm{T}^{\text {¢ }}\) \\
\hline 1740 & & \({ }^{\text {A Aug. }}\) & 812 A . & 1776 & & & Aug. & & 5 M . \\
\hline 1749 & & Dec. & 3 8 A. & 1777 & & & an. & & 5 A. \\
\hline 1750 & & Jan. & 9 M. & 1778 & & & une & 4 & \[
4 \mathrm{~A} .
\] \\
\hline 1750 & &) June & \({ }^{4} 9\) A. 7 . & 1778 & & & Dec. & 4 & \begin{tabular}{l}
6 M. \\
5 M. \(\tau\)
\end{tabular} \\
\hline -7 & & Dec. & 37 M . & 1779 & & & Nay & 30 & \(5 \mathrm{M} . \mathrm{S}^{8}\) \\
\hline & & June & 9 F M . & 1779 & & & June
Nov. & 14 & 8 M. \\
\hline 17 & & Dec. & 210 A . & & & & Nov. & & 8 A. \\
\hline 17 & & May & 38 A. & 178 & & & oct. & 7 & \[
6 \text { A. }
\] \\
\hline 1 & & \({ }^{2}\) April & 7.7 A . & 1780
1781 & & & \[
\begin{aligned}
& \text { Nov. } \\
& \text { Anril }
\end{aligned}
\] & 2 & \[
\begin{aligned}
& 4 \mathrm{M} . \\
& 6 \mathrm{~A} .
\end{aligned}
\] \\
\hline 17 & & Oct. 2 & 2610 M. & 1781
1782 & & & \[
\begin{aligned}
& \text { April } \\
& \text { Oct. }
\end{aligned}
\] & & \[
\begin{aligned}
& 6 \mathrm{~A} . \\
& 8 \mathrm{M} .
\end{aligned}
\] \\
\hline 1755 & & \()^{1}\) March 2 & \({ }^{8} \mathrm{I} \mathrm{I} \mathrm{M}\). & 1782
1782
1782 & & & April & & \[
\begin{aligned}
& 3 \mathrm{M} \\
& 7 \mathrm{~A}
\end{aligned}
\] \\
\hline \(1 \begin{aligned} & 1757 \\ & 1757\end{aligned}\) & & Feb. & 46 M. & 1782
1783 & & & \[
\text { April }{ }^{1}
\] & & \[
\begin{aligned}
& 7 \mathrm{~A} . \\
& 9 \text { А. Т. }
\end{aligned}
\] \\
\hline 1757 & & July & \(31^{12}\) A. & 1783
1783
178 & & & March 1 Sept. & & \[
\begin{aligned}
& 9 \text { А. Т. } \\
& \text { A. }
\end{aligned}
\] \\
\hline 1758 & & Jan. & + 7 M M. \({ }^{\text {\% }}\). & 1783
1784
17 & & & \begin{tabular}{l}
sept. \\
March
\end{tabular} & & \\
\hline 1758 & & Dec. & 307 M . & 1784
1785
1788 & & & \begin{tabular}{l}
March \\
eb.
\end{tabular} & & \[
\begin{array}{ll}
3 \mathrm{M} . \\
1 & \mathrm{~A} .
\end{array}
\] \\
\hline 1759
1759
17 & & June & 4.7 A. & 1787 & & & \[
\begin{aligned}
& \text { Fb. } \\
& \text { Ian. }
\end{aligned}
\] & & \\
\hline 1759
1700
170 & & Dec. & 92 A . & 1787 & & & \[
\begin{aligned}
& \mathrm{Jan} . \\
& \mathrm{Jan} .
\end{aligned}
\] & & \[
\begin{aligned}
& 12 \mathrm{~A} .7 \\
& 10 \mathrm{M} .
\end{aligned}
\] \\
\hline [1700 17 & & D May & 9) 9 A . & 1787 & & & an. une & & \[
\begin{aligned}
10 \mathrm{M} . \\
5 \mathrm{~A} .
\end{aligned}
\] \\
\hline 1760
1760 & & June & 37 M . & 1787
1787
178 & & & \[
\begin{aligned}
& \mathrm{June} \\
& \text { Dec. }
\end{aligned}
\] & & \[
\begin{aligned}
& 5 \mathrm{~A} . \\
& 3 \mathrm{~A} .
\end{aligned}
\] \\
\hline 1760 & & DNov. & 29 A. & \(1 \begin{aligned} & 1787 \\ & 1788 \\ & 178\end{aligned}\) & & & une & & \[
\begin{aligned}
& 3 \mathrm{~A} . \\
& 9 \mathrm{M} .
\end{aligned}
\] \\
\hline \(1{ }_{1}^{17} 101\) & & May & 811 A. T. & \(1 \begin{aligned} & 1788 \\ & 1789 \\ & 178\end{aligned}\) & & \[
\text { D }{ }^{\mathrm{Na}}
\] & \[
\begin{aligned}
& \text { june } \\
& \text { nov. }
\end{aligned}
\] & & \[
\begin{array}{r}
9 \mathrm{M} . \\
12 \mathrm{~A} .
\end{array}
\] \\
\hline 1762
1762
1702 & & Diay & 84 M. & 1789
1790 & & & \[
\begin{aligned}
& \text { Nov. } \\
& \text { April }
\end{aligned}
\] & & \[
\begin{aligned}
& 12 \mathrm{~A} . \\
& 12 \mathrm{~A} . \tau .
\end{aligned}
\] \\
\hline 1762
1702
170 & & Oa. & 78 M. & \[
\begin{aligned}
& 1790 \\
& 1740
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { April } \\
& \text { Oat. }
\end{aligned}
\] & & \\
\hline \begin{tabular}{|l|}
1702 \\
1763
\end{tabular} & & D Nov. & \({ }_{1}^{18} 8 \mathrm{~A}\). & \[
\left[\left.\begin{array}{l}
1740 \\
1791
\end{array} \right\rvert\,\right.
\] & & & oct. & & \[
1 \mathrm{~A} \text {. }
\] \\
\hline 1763 & & April & 38 M. & & & & & & \\
\hline
\end{tabular}

Vifible ECLIPSES from 1700 to 1800 .

328. A Lift of Eclipses, and hiforical Events, which bappened about the fame Times, from Ricciolus.

Before Christ.
\(754 \mid\) July \(\quad 5 |\)\begin{tabular}{l}
But according to an old Calen- \\
dar, this Ecliple of the Sun was \\
on the It of April, on which day \\
the foundations of Rome were laid; \\
if we may believe Taruntius Fir- \\
manes. \\
A total Eclipse of the Moon. \\
The AJyrian Empire at an end; \\
the Babylonian eftablifhed.
\end{tabular}

585 May 28 An Eclipfe of the Sun foretold by Thales, by which a peace was

Historical Ectipfe. brought about between the Modes and Lydians.
523 Jolly 6 An Eclipfe of the Moon, which was followed by the death of CAMbyes.
502 Nov. 19 An Eclipfe of the Moon, which was followed by the laughter of the Sabines, and death of Valerius Publicola.
463 April 30 An Eclipfe of the Sun. The Perfan war, and the falling-off of the Perfans from the Egyptians.

Before Christ.

After Christ.
\(59^{\prime}\) April \(30 |\)\begin{tabular}{l}
An Eclipfe of the Sun. This \\
is reckoned among the prodigies, \\
on account of the murder of \\
Agrippinus by Nero. \\
A total Ecliple of the Sun. A
\end{tabular}
* This Eclipfe happened ip the fint year of the Pelopongefian war.

,

329. I have not cited one half of Ricciolus's lift of portentous Ecliples ; and for the fame reafon that he declines giving any more of them than what that lift contains; namely, that it is moft difagreeable to dwell any longer on fuch nonfenfe, and as much as polfible to avoid tiring the reader: the fuperfition of the ancients may be feen by the few here copied. My author farther fays, that there were treatifes written to fhew againft what regions the malevolent effects of any particular Ecliple was aimed; and the writers affirmed, that the effects of an Ecliple of the Sun continued as many years as the Eclipfe lafted hours; and that of the Moon as many manths.
330. Yet fuch idle notions were once of no fmall advantage to Christopher Columbus, who, in the yéar 1493, was driven on the in and of Famaica, where he was in tine greateft diftrefs for want of provifions, and was moreover refufed any affiftance from the inhabitants; on which he threatened them with a plague, and told them, that in token of it, there fhould be an Eclipfe: which accordingly fell on the day he had foretold, and fo terrified the Barbarians, that they frove who fhould be firft in bringing him all forts of provifions; throwing them at his feet, and imploring his forgivenefs. Ricciolus's Almageft, Vol. I. l.v. c. ii.
331. Eclipfes of the Sun are more frequent than of the Moon, becaufe the Sun's ecliptic limits are greater than the Moon's, §317: yet we have more vifible Eclipfes of the Moon than of the Sun, becaufe Eclipfes of the Moon are feen from all parts of that Hemifphere of the Earth which is next her, and are equally great to each of thofe parts; but the Sun's Ecliples are vifible only to that fmall portion of the Hemifphere next him whereon the Moon's fhadow falls, as fhall be explaned by and by at large.
332. The Moon's Orbit being elliptical, and the Earth in one of its focules, the is once at her

Why there are more vifible Eclipfes of the Moos than of the. Surb

The fuperfitious notions of the ancients with regard to Eclipfes,
very fortuticer nate once SorChR15* TOPHER Colum. bus.

\section*{Of Eclipfes.}
plate leaft diftance from the Earth, and once at her
XI.

Fig. I.

Total and annular Ecliples of the Sun.

The longeft duration of total Eclip. fes of the Suл.

To how much of the Earch the Sun may be totally or partially eclipled at олсе. greateft in every Lunation. When the Moon changes at her leaft diftance from the Earth, and fo near the Node that her dark fhadow falls upon the Earth, fhe appears big enough to cover the whole * Difc of the Sun from that part on which her hadow falls; and the Sun appears totally eclipfed there, as at \(A\), for fome minutes: but when the Moon changes at her greatett diftance from the Earth, and fo near the Node that her dark Shadow is directed toward the Earth, her diameter fubtends a lefs angle than the Sun's; and therefore fhe cannot hide his whole Difc from any part of the Earth, nor does her fladow reach it at that time; and to the place over which the point of her fhadow hangs, the Eclipfe is annular, as at \(B\); the Sun's edge appearing like a luminous ring all around the body of the Moon. When the Change happens within 17 degrees of the Node, and the Moon at her mean diftance from the Earth, the point of her fhadow juft touches the Earth, and fhe eclipfes the Sun totally to that fmall fpor whereon her fhadow falls; but the darknefs is not of a moment's continuance.
333. The Moon's apparent diameter, when largeft, exceeds the Sun's, when leaft, only 1 minute \(3^{8}\) feconds of a degree: and in the greateft Eclipfe of the Sun that can happen at any time and place, the total darknefs continues no longer than while the Moon is going 1 minute 38 feconds from the Sun in her Orbit; which is about 3 minutes and 13 feconds of an hour.
334. The Moon's dark fhadow covers only a fpoton the Earth's furface, about 180 Englifb miles broad, when the Moon's diameter appears largeft
* Although the Sun and Moon are Spherical bodjes, as feen from the Larth they appear to be circular planes; and fo would the Earth do, if it were feen from the Moon. The apparently flat furfaces of the Sun and Moon are called theis Difes by Aftronomer.
and the Sun's leaft; and the total darknefs can extend no farther than the dark fhadow covers. Yet the Moon's partial fhadow or Penumbra may then cover a circular fpace 4900 miles diameter, within all which the Sun is more or lefs eclipfed, as the places are lefs or more diftant from the center of the Penumbra. When the Moon changes exactly in the Node, the Penumbra is circular on the Earth at the middle of the general Eclipfe; becaufe at that time it falls perpendicularly on the Earth's furface: but at every other moment it falls obliquely, and will therefore be elliptical, and the more fo, as the time is longer before or after the middle of the general Eclipfe; and then, much greater portions of the Earth's furface are involved in the Penumbra.
335. When the Penumbra firf touches the Earth, the general Eclipfe begins: when it leaves the Earth, the general Eclipfe ends: from the beginning to the end the Sun appears eclipfed in fome parc of the Earth or other. When the Penumbra touches any place, the Eclipfe begins at that place, and ends when the Penumbra leaves it. When the Moon changes in the Node, the Penumbra goes over the center of the Earth's Difc as feen from the Moon; and confequently, by defcribing the longeft line poffible on the Earth, continues the longeft upon it; namely, at a mean rate, 5 hours 50 minutes: more, if the Moon be at her greateft diftance from the Earth, becaule fhe then moves noweft ; lefs, if fhe be at her lealt diftance, becaufe of her quicker motion.
336. To make the laft five articles and feveral Fig. II. other phenomena plainer, let \(S\) be the Sun, \(E\) the Earth, \(M\) the Moon, and \(A M P\) the Moon's Orbit. Draw the right line \(W_{C} 12\) from the weftern fide of the Sun ar \(W\), touching the weftern fide of the Moon at \(c\), and the Earth at 12: draw alfo the right line \(V d\) i2 from the eaftern fide of the Sun at \(V\), touching the eaftern fide of the Moon at \(d\),

Duration of general and paricular Ecliples.
and the Earth at 12: the clark fpace ce \(12 d\) included between thofe lines in the Moon's fhadow, ending

The Muon's dark tha. dow,
and \(P\) enumbra. in a point at 12, where it touches the Earth; becaufe in this cafe the Moon is fuppofed to change at \(M\) in the middle between \(A\) the A pogee, or fartheft point of her Orbit from the Earth, and \(P\) the Perigee, or neareft point to it. For, had the point \(P\) been at \(M\), the Moon had been nearer the Earth; and her dark fhadow at \(e\) would have covered a fpace upon it about 180 miles broad, and the Sun would have been totally darkened, as at \(A\) (Fig. I.) with fome continuance: but had the point \(A\) (Fig. II.) been at \(M\), the Moon would have been farther from the Earth, and her fhadow would have ended in a point about \(e\), and therefore the Sun would have appeared, as at \(B\) (Fig. I.) like a luminous ring all around the Moon. Draw the right lines \(W X d b\) and \(V x \varepsilon g\), touching the contrary fides of the Sun and Moon, and ending on the Earth at \(a\) and \(b\) : draw alfo the right line \(S X M 12\), from the center of the Sun's Difc, through the Moon's center to the Earth at 12 ; and fuppofe the two former lines \(W X d b\) and \(V X \subset g\) to revolve on the line \(S X M 12\) as an Axis, and their points \(a\) and \(b\) will defcribe the limits of the Penumbra \(\mathcal{T} T\) on the Earth's furface, including the large fpace \(a \circ b 12 a\); within which the Sun appears more or lefs eclipfed, as the places are more or lefs diftant from the verge of the Penumbra \(a \circ b\).

Draw the right line \(y 12\) acrofs the Sun's Difc, perpendicular to \(S X M\), the Axis of the Penumbra: then, divide the line \(y 12\) into twelve equal parts, as in the Figure, for the twelve * Digits of the Sun's diameter: and at equal diftances from the center of the Penumbra at 12 (on the Earth's furface \(\mathcal{I}^{(Y)}\)) to its edge \(a 0 b\), draw twelve concentric Circles, as marked with the numeral Figures I 234 , \&rc. and remember that the Moon's mo-

\footnotetext{
- A Digit is a twelfth part of the diameter of the Sun and Moon.
}
tion in her Orbit \(A M P\) is from Welt to Eaft, as platz from s to \(t\). Then,

To an obferver on the Earth at \(b\), the eaftern limb of the Moon at \(d\) feems to touch the weftern limb of the Sun at \(W\), when the Moon is at \(M\); The different Pha'es of a folar Eclipfe. and the Sun's Eclipfe begins at \(b\), appearing as at \(A\) in Fig. III. at the left hand; but at the fame moment of abfolute time to an obferver at \(a\) in Fig. II. the weftern edge of the Moon at c leaves the eaftern edge of the Sun at \(V\), and the Eclipfe ends, as at the right hand \(C\) of Fig. III. At the very fame inftant, to all thofe who live on the Circle marked I on the Earth E in Fig. II. the Moon \(M\) cuts off or darkens a twelfth part of the Sun \(S\), and eclipfes him one Digit, as at I in Fig. III : to thofe who live on the Circle marked 2 in Fig. II. the Moon cuts off two twelfth parts of the Sun, as at 2 in Fig. III: to thofe on the Circle 3, three parts ; and fo on to the center at 12 in Fig. II. where the Sun is centrally eclipfed, as at \(B\) in the middle of Fig. III; under which Figure there is a fcale of hours and minutes, to hew at a mean rate how long it is from the beginning to the end of a central Eclipfe of the Sun on the parallel of London; and how inany Digits are eclipfed at any particular time, from the beginning at \(A\) to the middle at \(B\), or the end at \(C\). Thus, in 16 minutes from the beginning, the Sun is two Digits eclipfed; in an hour and five minutes, eight Digits; and in an hour and thirty-feven minures, twelve Digits.
337. By Fig. II. it is plain, that the Sun is totally or centrally eclipfed but to a-fmall part of the Earth at any time; becaule the dark conical fhadow e of the Moon \(M\) falls but on a finall part of the

Fig. II. Earth: and that a partial Eclipfe is confined at that time to the fpace included by the Circle \(a \circ b\), of which only one half can be projected in the Figure, the other half being fuppoled to be hid by the convexity of the Earth \(E\) : and likewife, that no part of the Sun is eclipfed to the large face \(2 x\)

PLATE XI. The Velocity of the Moon's Shadow on the Earth.

Fig. 1V.

Phenomena of the Earth as feen from the Sun or New Moon at different times of the year.
of the Earth, becaufe the Moon is not between the Sun and any of that part of the Earth: and therefore to all that part the Ecliple is invifible. The Earth turns eaftward on its Axis, as from \(g\) to \(b\), which is the fame way that the Moon's fhadow moves; but the Moon's motion is much fwifter in her Orbit from \(s\) to \(t\) : and therefore, although Eclipfes of the Sun are of longer duration on account of the Earth's motion on its Axis than they would be if that motion was ftopt, yet in four minutes of time at moft the Moon's fwifter motion carries her dark fhadow quite over any place that its center touches at the time of greateft obfcuration. The motion of the fhadow on the Earth's Difc is equal to the Moon's morion from the Sun, which is about \(30 \frac{1}{2}\) minutes of a degree every hour at a mean rate; but fo much of the Moon's Orbic is equal to \(30 \frac{1}{2}\) degrees of a great Circle on the Earth, § 320 ; and therefore the Moon's fhadow goes \(30 \frac{1}{2}\) degrees or 1830 geographical miles on the Farth in an hour, or \(30 \frac{1}{2}\) miles in a minute, which is almoft four times as fwift as the motion of a cannon-ball.
338. As feen from the Sun or Moon, the Earth's Axis appears differently inclined every day of the year, on account of keeping its parallelifm throughoutits annual courfe. Let \(E, D, O, N\) be the Earth at the two Equinoxes and the two Solftices, \(N S\) its Axis, \(N\) the North Pole, \(S\) the South Pole, AE 2 the Equator, \(\tau\) the Tropic of Cancer, \(t\) the Tropic of Capricorn, and \(A B C\) the Circumference of the Earth's enlightened Difc as feen from the Sun or New Moon at thefe times. The Earth's Axis has the pofition \(N E S\) at the vernal Equinox, lying toward the right hand, as feen from the Sun or New Moon; its Poles \(N\) and \(S\) being then in the Circumference of the Difc ; and the Equator and all its parallels feem to be ftraight lines, becaufe their planes pafs through the obferver's eye looking down upon the Earth from the Sun or

Moon directly over \(E\), where the Ecliptic FG inrerfects the Equator \(/ E\). At the Summer Solftice, the Earth's Axis has the pofition \(N D S\); and that part of the Ecliptic \(F G\), in which the Moon is then New, touches the Tropic of Cancer \(\mathcal{T}\) at \(D\). The North Pole \(N\) at that time inclining \(23^{\frac{1}{2}}\) degrees toward the Sun, falls fo many degrees within the Earth's enlightened Difc, becaufe the Sun is then vertical to \(D, 23 \frac{1}{2}\) degrees north of the Equator \(\pi \mathbb{2}\); and the Equator with all its parallels feem elliptic curves bending downward, or toward the South Pole, as feen from the Sun: which Pole, together with \(23^{\frac{1}{2}}\) degrees all round it, is hid behind the Difc in the dark Hemifphere of the Earth. At the Autumnal Equinox, the Earth's Axis has the pofition NOS, lying to the left hand as feen from the Sun or New Moon, which are then vertical to \(O\), where the Ecliptic cuts the Equator EEQ. Both Poles now lie in the circumference of the Difc, the North Pole juft going to difappear behind it, and the South Pole juft entering into it; and the Equator with all its parallels feem to be ftraight lines, becaufe their planes pals through the obferver's eye, as feen from the Sun, and very nearly fo as feen from the Moon. At the Winter Solitice, the Earth's Axis has the pofition \(N N S\); when its South Pole \(S\), inclining \(23 \frac{1}{2}\) degrees toward the Sun, falls \(23 \frac{1}{2}\) degrees within the enlightened Difc, as feen from the Sun or New Moon, which are then vertical to the Tropic of Capricorn \(t, 23 \frac{1}{2}\) degrees fouth of the Equator \(\mathscr{E Q}\); and the Equator with all its parallels feem elliptic curves bending upward; the North Pole being as far behind the Dilc in the dark Hemifphere, as the South Pole is come into the light. The nearer that any time of the year is to the Equinoxes or Sulftices, the more it partakes of the Phenomena relating to them.
339. Thus it appears, that from the Vernal Equinox to the Autumnal, the North Fole is enlighten-

How there pritions affeet tolar Ecliple:.
ed; and the Equator and all its parallels appear elliprical as feen from the Sun, more or lefs curved as the time is nearer to or farther from the Summer Solftice; and bending downward, or toward the South Pole; the reverfe of which happens from the Autumnal Equinox to the Vernal. A little confideration will be fufficient to convince the reader, that the Earth's Axis inclines toward the Sun at the Summer Solftice; from the Sun at the Winter Solftice; and fidewife to the Sun at the Equinoxes; but toward the right hand, as feen from the Sun at the Vernal Equinox; and toward the left hand at the Autumnal. From the Winter to the Summer Solftice, the Earth's Axis, inclines more or lefs to the right hand, as feen from the Sun; and the contrary from the Summer to the Winter Solftice.
340. The different pofitions of the Earth's Axis, as feen from the Sun at different times of the year, affect folarEclipfes greatly with regard to particular places; yea fo far as would make cencral Eclipfes, which fall at one time of the year, invifible if they had fallen at another, even though the Moon fhould always change in the Nodes, and at the fame hour of the day: of which indefinitely various affections, we fhall only give Examples for the times of the Equinoxes and Solfices.
Fig. IV.
In the fame Diagram, let \(F G\) be part of the Ecliptic, and \(I K, i k, i k\), \(i k\) part of the Moon's Orbit; borh feen edgewife, and therefore projected into right lines; and let the interfections \(N, O\), \(D, E\), be one and the fame Nodes at the abovetimes, when the Earth has the forementioned different pofitions; and let the fpace included by the Circles \(P, p, p_{1} p\), be the Penumbra at thefe times, as its center is paffing over the center of the Earth's Difc. At the Winter Solltice, when the Earth's \(A x i s ~ h a s ~ t h e ~ p o f i t i o n ~ N N S\), the center of the \(\mathrm{Pe}-\) numbra \(P\) touches the Tropic of Capricorn \(t\) in \(N\) at the middle of the general Eclipfe; but no part
of the Penumbra touches the Tropic of Cancer \(T\). At the Summer Solftice, when the Earth's Axis has the pofition \(N D S\) (\(i D k\) being then. part of the Moon's Orbit, whofe Node is at \(D\)), the Penumbra \(p\) has its center at \(D\), on the Tropic of Cancer T, at the middle of the general Eclipfe, and then no part of it touches the Tropic of Capricorn \(t\). At the Autumnal Equinox, the Earth's Axis has the pofition NOS (iOk being then part of the Moon's Urbit), and the Penumbra equally includes part of both Tropics \(\mathcal{T}\) and \(t\) at the middle of the general Eclipfe : at the vernal Equinox it does the fame, becaufe the Earth's Axis has the pofition NES: but, in the former of thefe two laft cafes, the Penumbra enters the Earth at \(A\), north of the Tropic of Cancer \(\mathcal{T}\), and leaves it at \(m\), fouth of the Tropic of Capricorn \(t\); having gone over the Earth obliquely fouthward, as its center defcribed the line \(A O \mathrm{~m}\) : whereas, in the latter cafe, the Penumbra touches the Earth at \(n\), fouch of the Equator \(\mathbb{X} \mathcal{Q}\), and defcribing the line \(n E q\) (fimilar to the former line \(A O m\) in open fpace), goes obliquely northward over the Earth, and leaves it at q, north of the Equator.

In all thefe circumftances, the Moon has been fuppofed to change at noon in her defcending Node: had the changed in her afcending Node, the Phenomena would have been as various the contrary way, with refpect to the Penumbra's going northward or fouthward over the Earth. But becaufe the Moon changes at all hours, as often in one Node as in the other, and at all diftances from them both at different times as it happens, the variety of the Phafes of Eclipfes are almoft innumerable, even at the fame places; confidering alfo how variouny the fame places are fituated on the enlightened Difc of the Earth, with refpect to the Penumbra's motion, at the different hours when Fclipfes happen.

How much of the Penumbrafalls on the Edrth at different diftances from the Nodes.

The Earth's diurnal motion lengthens the du. ration of fo. \(^{\text {s. }}\) lar Eclipfes, which fall without the polar Cir. cles.
341. When the Moon changes 17 degrees fhort of her defcending Node, the Penumbra \(P\) I 8 juft touches the northern part of the Earth's Difc, near the North Pole \(N\); and as feen from that place, the Moon appears to touch the Sun, but hides no part of him from fight. Had the Change been as far fhort of the afcending Node, the Penumbra would have touched the fouthern part of the Difc near the South Pole S. When the Moon changes 12 degrees fhort of the defcending Node, more than a third part of the Penumbra \(P_{12}\) falls on the northern parts of the Earth at the middle of the general Eclipfe: had the changed as far paft the fame Node, as much of the other fide of the Penumbra about \(P\) would have fallen on the fouthern part of the Earth; all the reft in the expanfum, or open fpace. When the Moon changes 6 degrees from the Node, almoft the whole Penumbra P6 falls on the Earch at the middle of the general Eclipfe. And laftly, when the Moon changes in the Node at \(N\), the Penumbra \(P N\) takes the longeft courfe pofible on the Earth's Difc; its center falling on the middle of it, at the middle of the general Eclipfe. The farther the Moon changes from either Node, within 17 degrees of it, the fhorter is the Penumbra's continuance on the Earth, becaufe it goes over a lefs proportion of the Difc, as is evident by the Figure.
342. The nearer that the Penumb:a's center is to the Equator at the middle of the general Eclipfe, the longer is the duration of the Eclipfe at all thofe places where it is central; becaufe, the nearer that any place is to the Equator, the greater is the Circle it defcribes by the Earth's motion on its Axis; and fo, the place moving quicker, keeps longer in the Penumbra, whofe motion is the fame way with that of the place, though fafter, as has been already mentioned, §337. Thus (fee the Earth at \(D\) and the Penumbra at 12) while the point \(b\) in the polar Circle \(a b c d\) is carried from \(b\)
to \(c\) by the Earth's diurnal motion, the point \(d\) on the Tropic of Cancer \(\mathcal{T}\) is carried a much greater length from \(d\) to \(D\) : and therefore, if the Penumbra's center goes one time over \(c\), and another time over \(D\), the Penumbra will be longer in paffing over the moving place \(d\) than it was in paffing over the moving place \(b\). Confequently, central Eclipfes about the Poles are of the fhorteft duration; and about the Equator, the longeft.
343. In the middle of Summer, the whole frigid Zone included by the polar Circle \(a b c d\) is enlightened; and if it then happens that the Penumbra's center goes over the North Pole, the Sun will be eclipfed much the fame number of Digits at a as at \(c\); but while the Penumbra moves eaftward over \(c\), it moves weftward over \(a\), becaufe, with refpect to the Penumbra, the motions of \(a\) and \(c\) are contrary: for c moves the fame way with the Penumbra toward \(d\), but \(a\) moves the contrary way toward \(b\); and therefore the Eclipfe will be of longer duration at \(c\) than at \(a\). At \(a\) the Eclipfe, begins on the Sun's eaftern limb, but at \(c\) on his weftern: at all places lying without the polar Circles, the Sun's Eclipfes begin on his weftern limb, or near it, and end on or near his eaftern. At thofe places where the Penumbra touches the Earth, the Eclipfe begins with the rifing Sun, on the top of his weftern or uppermoft edge ; and at thofe places where the Penumbra leaves the Earth, the Eclipfe ends with the fetting Sun, on the top of his eaftern edge, which is then the uppermoft, juit at its difappearing in the Horizon.
344. If the Moon were furrounded by an Atmofphere of any confiderable denfity, it would feem to touch the Sun a little before the Moon made her appulfe to his edge, and we fhould fee a little faintnefs on that edge before it were eclipfed by the Moon: but as no fuch faintnefs has been obferved, at leaft fo far as I ever heard, it feems plain, that the Moon has no fuch A tmofphere as that

The Moon has no Atmofphere.

ILATE XI.
of the Earth. The faint ring of light furrounding the Sun in total Eclipfes, called by Cassint, la Cloevelure diu Soleil, feems to be the Atmofphere of the Sun; becaufe it has been obferved to move equally with the Sun, not with the Moon.
345. Having faid fo much about Eclipfes of the Sun, we fhall drop that fubject at prefent, and proceed to the doctrine of Lunar Eclipfes: which, being more fimple, may be explained in lefs time.

Ectiples of the Moon.

That the ivioon can never be eclipfed but at the time of her being Full, and the reafon why the is not eclipfed at every Full, has been fhewn already, \(\$ 316,317\). Let \(S\) be the Sun, \(E\) the Earth, \(R R\) the Earth's Shadow, and \(B\) the Moon in oppofition
Fig. If. to the Sun: in this fituation the Earth intercepts the Sun's light in its way to the Moon; and when the Moon touches the Earth's fhadow at \(v\), fhe begins to be eclipfed on her eaftern limb \(x\), and continues eclipfed until her weftern limb y leaves the fhadow at \(w\); at \(B\) he is in the middle of the fhadow, and confequently in the middle of the Eclipfe.
346. The Moon when totally eclipfed is not invifible, if the be above the Horizon and the Sky be clear; but appears generally of a dufky colour like tarnifhed copper, which fome have thought to

Why the
Moon is vifible in a total Eclipfe. be the Moon's native light. But the true caufe of her being vifible is the fcattered beams of the Sun, bent into the Earth's fhadow by going through the Atmofphere; which, being more denfe near the Earth than at confiderable heights above it, refracts or bends the Sun's rays more inward, § 179; and thofe which pafs nearef the Earth's furface, are bent more than thofe rays which go through higher parts of the Atmofphere, where it is leis denfe, until it be fo thin or rare as to lofe its refrative power. Let the Circle \(f g b i\), concentric to the Earth, include the Armofphere, whofe refractive power vanifhes at the heights \(f\)
and \(i\); fo that the rays \(W f w\) and \(V i v\) go on
plate \(x 1\). ftraight without fuffering the leaft refraction: But all thofe rays which enter the Atmofphere between \(f\) and \(k\), and between \(i\) and \(l\), on oppofite fides of the Earth, are gradually more bent inward as they go through a greater portion of the Atmofphere, until the rays \(W k\) and \(V l\) touching the Earth at \(m\) and \(n\), are bent fo much as to meet at \(q\), a little Ahort of the Moon; and therefore the dark fhadow of the Earch is contained in the fpace moq \(p^{n}\), where none of the Sun's rays can enter: all the reft \(R R\), being mixed by the fcattered rays which are refracted as above, is in fome meafure enlightened by them; and fome of thofe rays falling on the Moon, give her the colour of tarnifhed copper, or of iron alnoth red-hot. So that if the Earth had no Armofphere, the Moon would be as invifible in total Lelipfes as fie is when New. If the Moon were fo near the Earth as to go into its dark fhadow, fuppofe about po, the would be invifible during her ftay in it; but vifible before and after in the fainter hadow \(R R\).
347. When the Moon goes through the center of the Earth's fhadow, the is directly oppofite to the Sun: yet the Moon has been often feen torally eclipfed in the Horizon when the Sun was alfo vifible in the oppofite part of it: for, the horizontal refraction being almoft 34 minutes of a degree, \(\$ 181\), and the diameter of the Sun and Moon being each at a mean ftate but 32 minutes, the refraction caufes both Luminaries to appear above the Horizon when they are really below it, § 179 .
348. When the Moon is Full at 12 degrees

Why the Sun and Moonare fometimes vifible when the Moon is totally eclipled. from either of her Nodes, the juft touches the Earth's Chadow, but enters not into it. Let GH be the Ecliptic, of the Moon's Orbit where fhe is 12 degrees from the Node at her Full; \(c d\) her Orbit where fhe is 6 degrees from the Node, a \(b\) her Orbit where fhe is Full in the Node, \(A B\) the

Duration of central Eclipfes of the Mocn.

Earth's fhadow, and \(M\) the Moon. When the Moon defcribes the line ef, fhe juft touches the Thadow, but does not enter into it; when the defrribes the line \(c d\), fhe is totally, though not centrally, immerfed in the fhadow; and when the defrribes the line \(a b\), the paffes by the Node at \(M\) in the center of the fhadow, and takes the longeft line poffible, which is a diameter, through it: and fuch an Eclipfe being both tutal and central, is of the longett duration, namely, 3 hours 57 minutes 6 feconds from the beginning to the end, if the Moon be at her greateft diftance from the Earth: and 3 hours 37 minutes 26 feconds, if the be at her leaft diftance. The reafon of this difierence is, that when the Moon is fartheft from the Earth, Ge moves the floweft; and when neareft to it, quickeft.

Why the beginning and end of a lunar Eclipfe is 50 difficult to be determined by obfervation.
349. The Moon's diameter, as well as the Sun's, is fuppofed to be divided into twelve equal parts called Digits; and fo many of thefe parts as are darkened by the Earth's fladow, fo many Digits is the Moon eclipled. All that the Moon is eclipfed above 12 Digits, hlew how far the fhadow of the Earth is over the body of the Moon, on that edge to which the is nearelt at the middle of the Eclipfe.
350. It is difficult to oblerve exactly either the beginning or ending of a lunar Eclipfe, even with a good Telefcope; becaule the Earth's Mhadow is fo faint and ill-defined about the edges, that when the Moon is either juft touching or leaving it, the obfcuration of her limb is fcarce fenfible; and therefore the nicelt obfervers can hardly becertain to feveral feconds of time. But both the beginning and ending of folar Ecliples are vifibly inftantaneous; for the moment that the edge of the Moon's Difc touches the Sun's, his roundnefs feems a little broken on that part; and the moment the leaves it, he appears perfectly round agrain.

35 1. In Aftronomy, Eclipfes of the Moon are of great ufe for afcertaining the periods of her motions; efpecially fuch Eclipfes as are obferved to be alike in all circumftances, and have long intervals of time between them. In Geography, the Longitudes of places are found by Eclipfes, as already fhewn in the Eleventh Chapter. In Chronology, both folar and lunar Eclipfes ferve to determine exactly the time of any paft event: for there are fo many particulars obfervable in every Eclipfe, with refpect to its quantity, the places where it is vifible (if of the Sun), and the time of the day or night; that it is impoffible there can be two folar Eclipfes in the courfe of many ages which are alike in all circum ftances.
352. From the above explanation of the doctrine of Eclipfes, it is evident that the darknefs at our Saviour's Crucifixion was fupernatural. For he fuffered on the day on which the Paffover was

The darknefs at our Saviour's Crucifixion, fuperatural. eaten by the ferws, on which day it was impoffible that the Moon's fhadow could fall on the Earth; for the Ferws kept the Paffover at the time of Full Moon: nor does the darknefs in total Eclipfes of the Sun laft above four minutes in any place, \(\S 333\); whereas the darknefs at the Crucifixion lafted three hours, Matt. xxviii. 15. and overfpread at leaft all the land of Fudea.

\author{
C H A P。
}

\section*{C H A P. XIX.}

Sberwing the Principles on which the following Aftro nomical Tables are conftructed, and the Metbod of calculating the Times of Nere and Full Moons and Eclipjes by them.
353.

THE nearer that any object is to the eye of an obferver, the greater is the angle under which it appears: the farther from the eye, the lefs.

The diameters of the Sun and Moon fubtend different angles at different times. And, at equal intervals of time, thefe angles are once at the greateft, and once at the leaft; in fomewhat more than a complete revolution of the Luminary through the Eclipric, from any given fixed Star to the fame Star again. - This proves that the Sun and Moon are conftantly changing their diftances from the Earth; and that they are once at their greateft diftance, and once at their leaft, in little more than a complete revolution.

The gradual differences of thefe angles are not what they would be, if the Luminaries moved in circular Orbits, the Earth being fuppofed to be placed at fome diftance from the center: but they agree perfectly with elliptic orbits, fuppofing the lower focus of each orbit to be at the center of the Earth.

The fartheft point of each Orbit from the Earth's center is called the Apogee, and the neareft point is called the Perigee. - Thefe points are directly oppofite to each other.

Aftronomers divide each Orbit into 12 equal parts, called Signs; each fign into 30 equal parts, called Degrees; each degree into 60 equal parts, called Minutes; and every minute into 60 equal parts, called Secoids. The diftance of the Sun or Moon from any given point of its orbit, is reckoned
koned in figns, degrees, minures, and feconds. Here we mean the diftance that the Luminary has moved through from any given point; not the fpace it is hort of it in coming round again, chough ever fo litele.

The diftance of the Sun or Moon from its Apogee, at any given time, is called its mean Anomaly: fo that, in the Apogee, the Anomaly is nothing; in the Ptrigee, it is fix figns.

The motions of the Sun and Moon are obferved to be continually accelerated from the A pogee to the Perigee, and as gradually retarded from the Perigee to the Apogee; being floweft of all when the mean Anomaly is norhing, and fwifteft of all when it is fix figns.

When the Luminary is in its Apogee or its Perigee, its place is the fame as it would be, if its motion were equable in all parts of its Orbit. The fuppofed equable motions are called mean; the unequable are juftly called the true.

The mean place of the Sun or Moon is always forwarder than the true place*, while the Luminary is moving from its Apogee to its Perigee; and the true place is always forwarder than the mean, while the Luminary is moving from its Perigee to its Apoget. - In the former cafe, the Anomaly is always lefs than fix figns; and in the latter cafe, more.

It has been found, by a long feries of oblervations, that the Sun goes through the Ecliptic, from the Vernal Equinox to the fame Equinox again, in 365 days 5 hours 48 minutes 55 feconds: from the firft Star of Aries to the fame Star again, in 365 days 6 hours 9 minutes 24 feconds: and from his Apogee to the fame again, in 365 days 6 hours 14 mi nutes ofeconds. - The firt of thefe is called the Solar Year, the fecond the Sydereal Year, and the third

\footnotetext{
* The point of the Ecliptic in which the Sun or Moon is at any given moment of time, is called the place of the Sun or Moon as that time.
}
the Anomalific Year. So that the Solar Year is 20 minutes 29 feconds fhorter than the Sydereal; and the Sydereal Year is 4 minutes 36 feconds fhorter than the Anomalific.-Hence it appears, that the Equinostial Point, or interfection of the Ecliptic and Equator at the beginning of Aries, goes backward with refpect to the fixed Stars, and that the Sun's Apogee goes forward.

It is alfo obferved, that the Moon goes through her Orbit, from any given fixed Star to the fame Star again, in 27 days 7 hours 43 minutes 4 fe conds, at a mean rate: from her Apogee to her Apogee again, in 27 days 13 hours 18 minutes 43 feconds: and from the Sun to the Sun again, in 29 days 12 hours 44 minutes \(3^{\frac{3}{2}}\) feconds. This fhews, that the Moon's Apogee moves forward in the Ecliptic, and that at a much quicker rate than the Sun's Apogee does; fince the Moon is five hours 55 minutes 39 feconds longer in revolving from her Apogee to her Apogee again, than from any Star to the fame Star again.

The Moon's Orbit croffes the Ecliptic in two oppofite points, which are called her Nodes: and it is obferved that the revolves fooner from any Node to the fame Node again, than from any Star to the fame Star again, by 2 hours 38 minutes 27 feconds, which fhews that her nodes mowe backward, or contrary to the order of figns, in the Ecliptic.

The time in which the Moon revolves from the Sun to the Sun again (or from change to change) is called a Lunation; which, according to Dr. Pound's mean meafures, would always confift of 29 days 12 hours 44 minutes 3 . feconds 2 thirds 58 fourths, if the motions of the Sun and Moon were always equable *.-Hence, 12 mean Luna-

\footnotetext{
* We have thought proper to keep by Dr. Pound's length of a mean Lunation, becaufe his numbers come nearer to the times of the ancient Eclipfes, than Mijer's do, without alioning for che Moon's acceleration.
}
tions contain 354 days 8 hours \(4^{8}\) minutes \({ }^{3} 6\) feconds 35 thirds 40 fourths, which is 10 days \(2 \mathbf{I}\) hours in minutes 23 feconds 24 thirds 20 fourths lefs than the length of a common Fulian year, confitting of 365 days 6 hours; and 13 mean Lunations contain 383 days 21 hours 32 minutes 39 feconds \(3^{8}\) thirds \(3^{8}\) fourths, which exceeds the length of a common Fulian year by 18 days 15 hours 32 minutes 39 feconds 38 thirds 38 fourths.

The mean time of New Moon being found for any given year and month, as fuppofe for March 1700, Old Stile, if this mean New Moon falls later than the I 1 th day of March, then, 12 mean Lunations added to the time of this mean New Moon, will give the time of the mean New Moon in March 1701, after having thrown off 365 days.-But, when the mean New Moon happens to be before the 11 th of March, we muft add 13 mean Lunations, in order to have the time of mean New Moon in March the year following: always taking care to fubtract 365 days in common years, and 366 days in leap-years, from the fum of this addition.

Thus, A. D. 1700, OldStile, the time of mean New Moon in March was the 8th day, at 16 hours 1 I minutes 25 feconds afver the noon of that day (viz. at II minutes 25 feconds paft IV. in the morning of the gth day according to common reckoning). To this we mult add 13 mean Lunations, or \(3^{8} 3\) days 21 hours 32 minutes 39 feconds \(3^{8}\) thirds \(3^{8}\) fourths, and the fum will be \(39^{2}\) days 13 hours 44 minutes 4 feconds \(3^{8}\) thirds 38 fourths; from which fubtract 365 days, becaufe the year 1701 is a common year, and there will remain 27 days 13 hours 44 minutes 4 feconds \(3^{8}\) thirds 38 fourths for the time of mean New Moon in March, A. D. ryor.

Carrying on this addition and fubtraction till A. D. 1703 , we find the time of mean New Moon in March that year, to be on the Gih day, at 7
hours 21 minutes 17 feconds 49 thirds 46 fourths palt noon; to which add 13 mean Lunations, and the fum will be 390 days 4 hours 53 minutes 57 feconds 29 thirds 20 fourths; from which fubtract 366 days, becaufe the year 1704 is a leap-year, and there will remain 24 days 4 hours 53 minutes 57 feconds 28 thirds 20 fourths, for the time of mean New Moon in March, A. D. 1704.

In this manner was the firft of the following Tables conftrueted on feconds, thirds, and fourths; and then wrote out to the neareft Ceconds. - The reafon why we chole to begin the year with March, was to avoid the inconvenience of adding a day to the tabular time in leap-years after Februery, or fubtracting a day therefrom in Fanuary and February in thofe years; to which all tables of this kind are fubject, which begin the year with fanuory, in calculating the times of New or Full Monns.

The mean Anomalies of the Sun and Mwon, and the Sun's mean motion from the Afcending Node of the Moon's Orbit, are fet down in Table III. from one to 13 mean Lunations. - Thefe Numbers, for 13 Lunations, being added to the radical Anomalies of the Sun and Moon, and to the Sun's mean diftance from the afcending Node, at the time of mean New Moon in March r 700 , (Table I.) willgive their mean A nomalies, and the Sun's mean diftance from the Node, at the time of mean New Moon in March 1701; and being added for 12 Lunations to thofe for 1701 , give them for the time of mean New Noon in Marcb 1702. And fo on, as far as you pleafe to concinue the Table (which is here carried on to the year 1800) always throwing off is figns when their fum exceeds i2, and fetting down the remainder as the proper quantiry.

If the Numbers belonging to A. D. 1700 (in Table I.) be fubtracted from thole belonging to 1800, we fhall have their whole differences in 100 complete Julian years; which accordingly we find
to be 4 days 8 hours 10 minutes 52 feconds 15 chirds 40 fourths, with relpeet to the time of mean New Moon.-Thefe being added together 60 times (always taking care to throw off a whole Lunation when the days exceed \(29 \frac{1}{2}\)) making up 60 centuries, or 6000 years, as in Table VI. which was carried on to feconds, thirds, and fourths; and then wrote out to the nearelt feconds. In the fame manner were the refpective Anomalies and the Sun's diftance from the Node found, for thefe centurial years; and then (for want of room) wrote out only to the neareft minutes, which is fufficient in whole centuries.-By means of thefe two Tables, we may find the time of any mean New Moon in March, together with the A nomalies of the Sun and Moon, and the Sun's diftance from the Node, at there times, within the limits of 6000 years, either before or after any given year in the 18 th century; and the mean time of any New or Full Moon in any given month after March, by means of the third and fourth Tables, within the fame limits, as fhewn in the precepts for calculation.
Thus it would be a very eafy matter to calculate the time of any New or Full Moon, if the Sun and Moon moved equably in all parts of their Orbits.-But we have already fhewn that their places are never the fame as they would be by equable motions, except when they are in Apogree or Perigee; which is, when their mean Anomalies are either nothing, or fix figns: and that their mean places are always forwarder than their true places, while the Anomaly is lefs than fix figns; and their true places are forwarder than the mean, while the Anomaly is more.

Hence it is evident, that while the Sun's Anomaly is lefs than fix figns, the Moon will overtakehim, or be oppofite to him, fooner than the could if his motion were equable; and later while his Anomaly is more than fix figns. - The greateft difference that can poffibly happen between the mean
and true time of New or Full Moon, on account of the inequality of the Sun's motion, is 3 hours 48 minutes 28 feconds: and that is, when the Sun's Anomaly is either 3 figns i degree, or 8 figns 29 degrees fooner in the firft cafe, and later in the laft. - In all other figns and degrees of Anomaly, the difference is gradually lefs, and vanifhes when the Anomaly is either nothing or fix figns.

The Sun is in his Apogee on the 3oth of Fune, and in his Perigee on the 3oth of Decermber, in the prefent age: fo that he is nearer the Earth in our winter than in our fummer. The proportional difference of diftance, deduced from the difference of the Sun's apparent diameter at there times, is as 983 to 1017.

The Moon's orbit is dilated in winter, and contracted in fummer; therefore, the Lunations are longer in winter than in fummer. The greateft difference is found to be 22 minutes 29 feconds: the Lunations increafing gradually in length while the Sun is moving from his Apogee to his Perigee, and decreafing in length while he is moving from his Perigee to his Apogee. -On this account, the Moon will be later every time in coming to her conjunction with the Sun, or being in oppofition to him, from December till fune, and fooner from Fune to December, than if her orbit had continued of the fame fize all the year round.

As both thefe differences depend on the Sun's Anomaly, they may be fitly put together into one Table, and called The annual, or firft equation of the mean to the true * fyzygy (fee Table VII.). This equational difference is to be fubtracted from the time of the mean fyzygy when the Sun's Anomaly is lefs than fix figns, and added when the Anomaly is more.-At the greateft, it is 4 hours 10 minutes 57 feconds, viz. 3 hours 48 minutes 28 feconds, On account of the Sun's unequal motion, and 22

\footnotetext{
* The word fyzygy fignifies both the conjunction and oppoGition of the Sun and Moon.
}
minutes 29 feconds, on account of the dilatation of the Moon's orbit.

This compound equation would be fufficient for reducing the mean time of New or Full Moon to the true time, if the Moon's orbit were of a circular form, and her motion quite equable in it.But the Moon's Orbit is more elliptical than the Sun's, and her motion in it fo much the more unequal. The difference is fo great, that the is fometimes in conjunction with the Sun, or in oppofition to him, fooner by 9 hours 47 minutes 54 fe conds, than the would be if her motion were equable; and at other times as much later. - The former happens when her mean Anomaly is 9 figns 4 degrees, and the latter when it is 2 figns 26 degrees. See Table IX.

At different diftances of the Sun from the Moon's Apogee, the Figure of the Moon's Orbit becomes different.-It is longeft of all, or moft excentric, when the Sun is in the fame fign and degree either with the Moon's Apogee or Perigee; thorteft of all, or leaft excentric, when the Sun's diftance from the Moon's Apogee is either three figns or nine figns; and at a mean ftate when the diftance is either 1 fign 15 degrees, 4 figns 15 degrees, 7 figns 15 degrees, or 10 figns 15 degrees. - When the Moon's Orbit is at its greateft excentricity, her apogeal diftance from the Earth's center is to her perigeal diftance from it, as 1057 is 10933 ; when leaft excentric, as 1043 is to 957 ; and when at the mean ftate, as 1055 is to 945 .

But the Sun's diftance from the Moon's A pogee is equal to the quantity of the Moon's mean Anomaly at the time of New Moon, and by the addition of fix figns, it becomes equal in quantity to the Moon's mean Anomaly at the time of Full Moon. - Therefore a table may be conftructed fo as t.) anfwer all the various inequalities depending on the different excentricities of the Moon's Orbir, in the fyzygies; and called The fecond equation of
the mean to the true fyzygy (fee Table IX.); and the Moon's Anomaly, when equated by Table VIII. may be made the proper argument for taking out this fecond equation of time, which muf be added to the former equated time, when the Moon's Anomaly is lefs than fix figns, and fubtracted when the A nomaly is more.

Thereare feveral other inequalities in the Moon's motion, which fometimes bring on the true fyzygy a littie footier, and at other times keep ir back a little later than it would ntherwife be: but they are fo fmall, that they may be all omitted except two; the former of which (See Table X.) depends on the difference between the A nomalies of theSun and Moon in the fyzygies, and the latter (See Table XI.) depends on the Sun's diftance from the Moon's Nodes at thefe times. - The greateft difference arifing from the former, is 4 minutes \(5^{8}\) feconds; and from the latter, I minute 34 feconds.

Having defcribed the Phenomene arifug from the inequalities of the Solar and Lunar Motions, we 乃all now foer the reafons of the efe inequalities.

In all calculations relating to the Sun and Moon, we confider the Sun as a moving body, and the Earth as a body at reft; fince all the Appearances are the farse, whether it be the Sun or the Earth that moves.- But the truth is, that the Sun is at reft, and the Earth moves round him once a year, in the plane of the Ecliptic. Therefore, whatever fign and degree of the Ecliptic the Earth is in, at any given time, the Sun will then appear to be in the oppofite fign and degree.

The nearer that any body is to the Sun, the more it is attracted by him; and this attraction increafes as the fquare of the diftance diminilhes; and vice verfâ.

The Earth's annual Orbit is elliptical, and the Sun is placed in one of its focufes. The remoteft
point of the Earth's Orbit from the Sun is called The Earth's Aphelion; and the neareft point of the Earth's Orbit to the Sun is called The Earth's Pe-ribelion.-When the Earth is in its Aphelion, the Sun appears to be in its Apogee; and when the Earth is in its Peribelion, the Sun appears to be in its Perigre.

As the Earth moves from its Aphelion to its Perihelion, it is conftantly more and more attracted by the Sun; and this attraction, by confpiring in fome degree with the Earth's motion, mut neceffarily accelerate it. But as the Earth moves from its Perihelion to its Aphelion, it is continually lefs and lefs attracted by the Sun; and as this attraction acts then juft as much againft the Earth's motion, as it acled for it in the orher half of the Orbit, it retards the motion in the like degree. - The fafter the Earth moves, the fafter will the Sun appear to move; the flower the Earth moves, the flower is the Sun's apparent motion.

The Moon's Orbit is alfo elliptical, and the Earth keeps conftantly in one of its focufes. The Earth's attraction has the fame kind of influence on the Moon's motion, as the Sun's attraction has on the motion of the Earth: and therefore, the Moon's motion mult be continually accelerated while fhe is paffing from her Apggee to her Perigee; and as gradually retarded in moving from her Perigee to her Apogee.

At the time of New Moon, the Moon is nearer the Sun than the Earth is at that time, by the whole femidiameter of the Moon's Orbit; which, at a mean ftate, is 240,000 miles; and at the Full, fhe is as much farther from the Sun than the Earth then is.-Confequently, the Sun attracts the Moon more than it attracts the Earth in the former cafe, and lefs in the latter. The difference is greateft when the Earth is neareft the Sun, and lealt when it is fartheft from him. The obvious refult of this is, that as the Earth is neareft fummer, the Moon's Orbit mult be dilated in winter, and contracted in fummer.

Thefe are the principal caufes of the difference of time, that generally happen between the mean and true times of conjunction or oppofition of the Sun and Moon. As to the other two differences, viz. thofe which depend on the difference between the Anomalies of the Sun and Moon, and upon the Sun's diftance from the lunar Nodes, in the fyzygies, they are owing to the different degrees of attraction of the Sun and Earth upon the Moon, at greater or lefs diftances, according to their refpective Anomalies, and to the pofition of the Moon's Nodes with refpect to the Sun.

If ever it fhould happen, that the Anomalies of both the Sun and Moon were either nothing or fix figns, at the mean time of New or Full Moon, and the Sun fhould then be in conjunction with either of the Moon's Nodes, all the above-mentioned equations would vanifh, and the mean and true time of the fyzygy would coincide. But if ever this circumftance did happen, we cannot expect the like again in many ages afterward.

Every 49th Lunation, (or Courfe of the Moon from Change to Change) returns very nearly to the fame time of the day as before. For, in 49 mean Lunations there are 1446 days 23 hours 58 minutes 29 feconds 25 thirds, which wants but I minute 30 feconds 34 thirds of 1477 days.
In 2953059085108 days, there are 100000000000 mean Lunations exactly: and this is the fmalleft number of natural days in which any exact numa ber of mean Lunations are completed.

TA B LE I. The mean Time of New Moon in March, Old Stile; with the mean Anomalies of the Sun and Moon, and the Sun's mean Diftance from the Moon's Afrending Node, from A, D. 1700 to A. D. 1800 inclufive.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{\[
\begin{gathered}
\text { Mean New Moon } \\
\text { in March. }
\end{gathered}
\]} & \multicolumn{5}{|c|}{Sun's mean Anomaly.} & \multicolumn{4}{|l|}{Moon's mean Anomaly.} & \multicolumn{5}{|l|}{Sun's mean Ditt from the Nodc.} \\
\hline \% & D. H & H. & & S & s & 0 & & & & & o & & & & s & 0 & & \\
\hline & 8 & 16 & & 25 & 8 & & 58 & 48 & & & 22 & 30 & 37 & & & 14 & 31 & \\
\hline & 27 & 13 & 44 & 5 & 8 & 8 & 20 & 59 & & & 28 & 7 & 42 & & & 23 & 14 & \\
\hline & 16 & 22 & 32 & 41 & 8 & 27 & 36 & 51 & & & 7 & 55 & 47 & & 8 & 1 & 16 & \\
\hline & & & 21 & 18 & 8 & 16 & 52 & 43 & & & 17 & 43 & 52 & & & 9 & 19 & \\
\hline & 24 & 4 & 53 & 5 & 9 & 5 & 14 & 54 & & 8 & 23 & 20 & 57 & & 9 & 18 & 2 & \\
\hline & 131 & 13 & & & 8 & 24 & 30 & 7 & & & & & & & & 6 & & \\
\hline & 22 & 22 & 31 & 11 & 8 & 13 & 46 & 39 & & & 12 & 57 & & & & 4 & & \\
\hline & 11 & 2 & 3 & 50 & 9 & & 8 & 50 & & 4 & 18 & 34 & 13 & & & 12 & 51 & \\
\hline & 10 & 4 & 52 & 27 & 8 & 21 & 24 & 43 & & 2 & 28 & 22 & 18 & 11 & 1 & 20 & 54 & \\
\hline & 9 & & 25 & & 9 & 9 & 46 & & & & & & 24 & & & & \% & \\
\hline & & 11 & 13 & 43 & 8 & 29 & 2 & 47 & & & 13 & 47 & 30 & & & 7 & 39 & \\
\hline & 7 & 20 & 2 & 20 & 8 & 18 & 18 & 39 & & & 23 & 35 & 36 & & & 15 & , & \\
\hline & 25 & 17 & 34 & 59 & 9 & 6 & 40 & 51 & & 9 & 29 & 12 & \(4^{2}\) & & 2 & 14 & 25 & \\
\hline & 5 & & & 36 & 8 & 25 & 56 & 43 & & & & & & & & & 28 & \\
\hline & 4 & 11 & 12 & 13 & 8 & 15 & 12 & 35 & & 6 & 18 & 48 & 52 & & & 10 & 31 & \\
\hline & & 8 & 44 & 52 & 8 & 3 & 34 & 47 & & & 24 & 25 & 57 & & & 19 & 14 & \\
\hline & 1 & 17 & 33 & 5 & 8 & 22 & 50 & & & 4 & & 14 & & & & 27 & 17 & \\
\hline & 1 & 2 & & & 8 & 2 & & 32 & & & 14 & & & & & & & \\
\hline & 19 & 23 & 54 & 45 & 9 & - & 28 & 44 & & & 19 & 39 & & & & 14 & & \\
\hline & 9 & 8 & 43 & 22 & 8 & 19 & 44 & 37 & & 1 & 29 & 27 & 18 & & 6 & 22 & & \\
\hline & 27 & 6 & 16 & & 9 & & 6 & 49 & & & & & & & & 0 & 8 & \\
\hline & 16 & 15 & 4 & & 8 & 27 & 22 & & & & & & & & & & & \\
\hline & 5 & 23 & 53 & 14 & 8 & 16 & 38 & 33 & & 7 & 24 & 40 & & & & 16 & 54 & \\
\hline & 24 & 21 & 25 & 54 & 9 & 5 & & 45 & & & 24 & 17 & 40 & & 9 & 25 & 37 & \\
\hline & 13 & 6 & 14 & 31 & 8 & 24 & 16 & 37 & & & 10 & 1 & 45 & & - & 25 & 40 & \\
\hline & 2 & 15 & 3 & & 8 & 1 & 32 & 29 & & & & & & & & & & \\
\hline & 21 & 12 & 35 & 47 & 9 & & 54 & \[
41
\] & & & & 30 & \[
56
\] & & & 20 & 25 & \\
\hline & 810 & 21
18 & 24 & 23 & 8 & 21 & , & 34 & & & & 19 & & 1 & & 28 & 28 & \\
\hline & 828 & 18 & 57 & & 9 & 9 & 52 & 46 & & \(\bigcirc\) & 10 & 56 & & & & 7 & 11 & \\
\hline & & & 45 & 4 & 8 & 28 & 48 & & & & & & & & & & & \\
\hline & & \[
12
\] & \[
34
\] & 16 & 8 & & & 31 & & & - & 32 & 17 & & & 15 & 14 & \\
\hline & \[
\begin{aligned}
& 1 \\
& 26 \\
& \hline 14 \\
& \hline 14
\end{aligned}
\] & & \[
55
\] & 56 & 8 & 25 & 26 & 42 & & 8 & & & & & & 2 & 7 & \\
\hline & & & 55 & 33 & 8 & 25 & 42 & & & & 15 & 57 & \(\begin{array}{r}28 \\ 28 \\ \hline\end{array}\) & & & 10 & \(\bigcirc\) & \\
\hline
\end{tabular}

TABLE I. contimued. Old Stile.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{\[
\begin{gathered}
\text { Mean New Moon } \\
\text { in March. }
\end{gathered}
\]} & \multicolumn{4}{|c|}{Sun's mean Anomaly.} & \multicolumn{5}{|r|}{Moon's mean Anomaly.} & \multicolumn{5}{|l|}{Sun's mean Dift from the Node.} \\
\hline & & H. & M. & & & o & & & & & - & & & & & & & \\
\hline 33 & 4 & 3 & & 9 & 8 & 14 & \(5^{8}\) & & & & 25 & 45 & 33 & 3 & 318 & & & \\
\hline 1734 & 23 & 1 & & 49 & 9 & 3 & 20 & 38 & & & 1 & 22 & 39 & 9 & 426 & & 48 & \\
\hline 1735 & 12 & 10 & 5 & 25 & 8 & 22 & \(3^{6}\) & 30 & & & 11 & 10 & 44 & & 5 & & 51 & \\
\hline 1736 & \(\bigcirc\) & 18 & 54 & 2 & 8 & 11 & \(5^{2}\) & & & & 20 & \(5^{8}\) & 49 & 95 & 5 & & 54 & \\
\hline 1737 & 19 & 16 & 26 & 42 & 9 & - & 14 & 34 & \({ }^{11}\) & & 26 & 35 & 55 & 5 & 5 & & 3 & \\
\hline & 9 & & 15 & & 8 & 19 & 30 & 6 & 6 & - & 6 & 24 & & - 6 & 62 & & & \\
\hline 1739 & 27 & 22 & 47 & \(5^{8}\) & 9 & 7 & 52 & 38 & & 9 & 12 & 1 & 6 & 6 & 8 & & 23 & \\
\hline 0 & 16 & 7 & 36 & 34 & 8 & 27 & 8 & 30 & & 7 & 21 & 49 & 11 & 18 & 816 & & 26 & \\
\hline 1 & 5 & 16 & 25 & 11 & 8 & 16 & 24 & 22 & 2 & 6 & 1 & 37 & 16 & 6 & \(8 \quad 24\) & & 28 & \\
\hline 1742 & 24 & 13 & 57 & 52 & 9 & 4 & 46 & 34 & & 5 & 7 & 14 & 22 & 210 & - 3 & & 11 & \\
\hline & 13 & 22 & 46 & 27 & 8 & 24 & & & & 3 & & & 27 & 710 & & & 14 & \\
\hline & 2 & 7 & 35 & 4 & 8 & 13 & 18 & 20 & & 1 & 26 & 50 & 32 & 210 & 19 & & 17 & \\
\hline 5 & 21 & 5 & 7 & 44 & 9 & 1 & 40 & 32 & & 1 & 2 & 27 & 38 & 11 & 128 & & & \\
\hline & 10 & 13 & 56 & 20 & 8 & 20 & 56 & 24 & 11 & 1 & 12 & 15 & 43 & 3 & - 6 & & & \\
\hline 17 & 29 & 11 & 29 & - & 9 & 9 & 18 & 36 & 10 & - & 17 & \(5^{2}\) & 49 & 1 & 14 & & 46 & \\
\hline & , & 20 & 17 & 36 & 8 & 28 & 34 & 28 & & 8 & 27 & & 54 & & 122 & & 49 & \\
\hline 1749 & & 5 & 8 & 13 & 8 & 17 & 50 & 20 & & 7 & 7 & 28 & 59 & & 2 & & 51 & \\
\hline 1750 & & 2 & 38 & 53 & 9 & 6 & 12 & 32 & & 6 & 13 & 6 & & 5 & 9 & & 34 & 5 \\
\hline 1751 & 15 & 11 & 27 & 29 & 8 & 25 & 28 & 24 & & 4 & 22 & 54 & 10 & & 17 & & 37 & 4 \\
\hline 1752 & 3 & 20 & 16 & 6 & 8 & 14 & 44 & 16 & & 3 & 2 & \(4^{2}\) & 15 & 53 & 35 & & 40 & \\
\hline & & & \(4^{8}\) & 45 & & & 6 & & & & 8 & 19 & 21 & & 54 & & 23 & \\
\hline & & & 37 & 22 & 8 & 2 & 22 & & & & 18 & 7 & 26 & 6 & 512 & & 26 & \\
\hline & & 11 & 25 & 59 & 8 & 11 & \(3^{8}\) & 12 & 210 & & 27 & 55 & 31 & 1 & 20 & & 29 & \\
\hline & 9 & 8 & 58 & 38 & 9 & \(\bigcirc\) & \(\bigcirc\) & 24 & 10 & & 3 & 32 & 37 & & 29 & & 12 & \\
\hline 1757 & 8 & 17 & 47 & 15 & 8 & 19 & 16 & 16 & & 8 & 13 & 20 & 42 & & & & 14 & 5 \\
\hline & & 15 & 9 & 54 & 9 & 7 & 38 & & & 7 & 18 & 57 & 48 & 8 & 15 & & 57 & 5 \\
\hline 1759 & & & 8 & 31 & 8 & 26 & 54 & 20 & & 5 & 28 & 45 & 54 & 4 & 24 & & & 39 \\
\hline & & & 57 & & 8 & 16 & 10 & 12 & & 4 & 8 & 34 & & d & 92 & & & 26 \\
\hline 1761 & 24 & 6 & 29 & 47 & 9 & 4 & 32 & 24 & & 3 & 14 & 11 & & 6,10 & 10 & & 46 & 27 \\
\hline 1762 & 13 & 15 & 18 & 24 & 8 & 23 & 48 & 16 & & , & 23 & 59 & 11 & 10 & 18 & & 49 & 14 \\
\hline & & & & & 8 & & & & & & 3 & 47 & 16 & & 26 & & 52 & \\
\hline 1764 & & 21 & 39 & 40 & 9 & & 26 & & & & 9 & \(2+\) & 21 & & - 5 & & 35 & \\
\hline 1765 & & 6 & 28 & 17 & 8 & 20 & 42 & & & & 19 & 12 & 26 & - & 13 & & 37 & 49 \\
\hline 1766 & & 4 & 0 & 56 & 9 & 9 & 4 & & & & 24 & 49 & 32 & 1 & 22 & & 20 & \\
\hline
\end{tabular}

TABLE

TA B LE I. concluded. Old Stile.

TABLE

T A B L E II. concluded. New Stile.

TABLE III. Mean Anomalies, and Sun's mean Diftance from the Node, for \(13^{\frac{1}{2}}\) mean Lunations.

TABLEIV. The Days of the Year, reckoned from the beginning of Marcis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\frac{0}{6}
\] & \[
\begin{aligned}
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
3
\] & \[
\underset{\substack{3 \\ \sim \\ \sim}}{ }
\] & \[
\begin{aligned}
& \text { E } \\
& \Xi \\
& \square
\end{aligned}
\] & \(\pm\) & \[
\begin{aligned}
& 2 \\
& E \\
& 0 \\
& 0 \\
& \text { E }
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 7 \\
& 3 \\
& 0 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 7
0
0
0
0
0
0
7 & \[
\begin{aligned}
& 0 \\
& 2 \\
& \frac{2}{2} \\
& 3 \\
& \frac{\pi}{4} \\
& \frac{1}{4}
\end{aligned}
\] & & \\
\hline 1 & 1 & 32 & 02 & 93 & 123 & 154 & 185 & & & 276 & 307 & 8 \\
\hline 2 & 2 & 33 & 03 & 94 & 124 & 155 & 186 & 216 & 247 & 277 & 308 & 339 \\
\hline 3 & 3 & 34 & 64 & 95 & 1 & . 50 & 187 & 217 & 24.8 & 278 & 9 & 340 \\
\hline 4 & 4 & 35 & 65 & 96 & 12 C & 1,7 & 188 & 213 & 249 & 279 & 310 & 341 \\
\hline 5 & 5 & 36 & 66 & 97 & 127 & 158 & 189 & 219 & 250 & 280 & 311 & 342 \\
\hline 6 & 6 & 37 & 67 & 98 & 128 & 159 & 190 & 220 & 251 & 281 & 312 & 343 \\
\hline 7 & 7 & 38 & 68 & 99 & 129 & 160 & 101 & 221 & 252 & 282 & 313 & 344 \\
\hline 8 & 8 & 39 & 69 & 102 & 130 & 161 & 192 & 222 & 253 & 283 & 314 & 345 \\
\hline 9 & 9 & 40 & 70 & 10 & 131 & 162 & 143 & 223 & 254 & 284 & 315 & 346 \\
\hline 10 & 10 & 41 & 71 & 102 & 132 & 1 & 194 & 224 & 255 & 85 & 316 & 47 \\
\hline 1 & 11 & 4 & 72 & 103 & 133 & 164 & 195 & 2 & 256 & 286 & 17 & \(34^{8}\) \\
\hline 12 & 2 & 43 & 73 & \(10+\) & 134 & 165 & 106 & 226 & 257 & 7 & 318 & 349 \\
\hline 13 & 13 & 44 & 74 & & 135 & 166 & 107 & 227 & 258 & 288 & 319 & 350 \\
\hline 14 & 14 & 45 & 75 & 100 & 136 & 16 & 198 & 228 & \(25 \%\) & 289 & 320 & 351 \\
\hline 15 & 15 & 46 & 75 & 107 & 137 & 16 & 199 & 22 & 260 & 290 & 321 & \(35^{2}\) \\
\hline 16 & 16 & + & 77 & 108 & \(13^{8}\) & 109 & 200 & 230 & 261 & 291 & 32 2 & 353 \\
\hline 17 & 17 & 48 & 78 & 109 & 139 & 170 & 201 & 231 & 262 & 292 & 323 & 354 \\
\hline 18 & 18 & 49 & 79 & 110 & I 40 & 17 & 202 & 232 & 263 & 93 & 324 & 355 \\
\hline 19 & 19 & 50 & 30 & 1 & 14 & 172 & 203 & 23 & & 4 & 325 & 350 \\
\hline 20 & 20 & 51 & 81 & 112 & 142 & 173 & 204 & 234 & 6 & 295 & 326 & 357 \\
\hline 21 & 21 & ;2 & 82 & 113 & 143 & 174 & 205 & 235 & 260 & 296 & 327 & 58 \\
\hline 22 & 22 & 53 & 83 & 114 & 144 & 175 & 206 & 239 & 267 & 297 & 328 & 359 \\
\hline 23 & 23 & 54 & 84 & 115 & 145 & 176 & 207 & 237 & 268 & 298 & 329 & j6c \\
\hline 5 & 24 & 55 & 35 & 116 & 146 & 177 & 208 & \(23^{8}\) & 269 & 299 & 330 & 361 \\
\hline 25 & 25 & -6 & 86 & 117 & 147 & 178 & 209 & 239 & 270 & 300 & 331 & 2 \\
\hline 26 & 26 & 57 & 87 & 118 & 148 & 179 & 210 & 240 & 271 & 301 & 332 & 363 \\
\hline \(2 \%\) & 27 & -8 & 88 & 119 & 149 & 180 & 211 & \(24^{1}\) & 272 & 302 & 333 & 364 \\
\hline 28 & 28 & -9 & 89 & 120 & 150 & 181 & 212 & 242 & 273 & j03 & 334 & 3 \\
\hline 29 & 29 & 60 & 90 & 121 & 151 & 182 & 213 & \(24 ;\) & 274 & 304 & 335 & \\
\hline 10 & 30 & 61 & 91 & 122 & 152 & 183 & 214 & 214 & 275 & 305 & 336 & \\
\hline 31 & 31 & & 92 & & 153 & 15 & & 245 & & 306 & 3:7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Lunat. & Days. Decimal Parts. & Days. & u: & & S. & & \\
\hline & 29. 530590851080 50.061181\%02160 & \(=29\) & \[
12
\] & & \[
\begin{aligned}
& 3 \\
& 6
\end{aligned}
\] & & \\
\hline & 88. 591772553240 & 8 & 14 & 12 & , & 8 & \\
\hline & 118.122363404320 & 13 & 2 & 56 & 12 & 1 & 53 \\
\hline & 147.652954255401 & 147 & 15 & 40 & 15 & 14 & 52 \\
\hline & 177.183545100481 & 177 & 4 & 24 & 18 & 17 & 50 \\
\hline & 206.714135957561 & 206 & 17 & & 21 & & \\
\hline & 236.244726808641 & 236 & 5 & & 24 & 23 & \\
\hline & 265.775317659722 & 265 & 18 & 36 & 27 & 26 & 45 \\
\hline 10 & \(295 \cdot 30590851080\) & 295 & 7 & 20 & 30 & 29 & 43 \\
\hline 20 & 590.61181702160 & 590 & 14 & & & 59 & \\
\hline 30 & 885.91772553240 & 885 & 22 & & 31 & 29 & 10 \\
\hline 40 & 1181.22363404320 & 1181 & 5 & 22 & 1 & \(5^{8}\) & 53 \\
\hline 50 & 1476.52954255401 & 1476 & 12 & 42 & 32 & 28 & 36 \\
\hline 60 & 1771.83545106481 & 1771 & 20 & 3 & & 58 & 9 \\
\hline 70 & 2067.14135957561 & 2067 & 3 & 23 & 33 & 28 & \\
\hline 80 & 2362.44720808641 & 2362 & 10 & 44 & 3 & 57 & 46 \\
\hline gc & 2657.75317659722 & 2657 & 18 & 4 & 34 & 27 & 29 \\
\hline 100 & 2953.0590851080 & 2953 & 1 & 25 & 4 & 57 & 12 \\
\hline 200 & 5906.1181702160 & 59.6 & 2 & 50 & 4 & 54 & 36 \\
\hline 30 & 8859.1772553240 & 8859 & 4 & 15 & 14 & 51 & 36 \\
\hline \(4{ }^{\circ}\) & 11812.2363404326 & 11812 & 5 & 40 & 19 & 48 & 48 \\
\hline 500 & 14765.2954255401 & 14765 & 7 & 5 & 24 & 46 & \\
\hline 600 & \({ }^{1} 7718.3545106481\) & 17718 & 8 & 30 & 29 & 43 & 12 \\
\hline 70 & 20671.4135957561 & 20671 & 9 & 55 & 34 & 40 & \\
\hline 800 & 23624.4726808641 & 23624 & 1 & 20 & 39 & 37 & 36 \\
\hline 900 & \(26577 \cdot 53176597.22\) & 26577 & 12 & 45 & 44 & 34 & 48 \\
\hline 1000 & 29530.590851080 & 29530 & 14 & 10 & 49 & 32 & \\
\hline 2000 & 59061.181702160 & 59061 & 8 & 21 & \(3 y\) & 4 & 0 \\
\hline 3000 & 88591.772553140 & 88591 & 18 & 32 & 28 & 36 & - \\
\hline 4 & 118122.363404320 & 118122 & 8 & 43 & 18 & 8 & - \\
\hline & 147652.954255401 & 147652 & 22 & 54 & 7 & 40 & \(\bigcirc\) \\
\hline & 177183.545106481 & 177183 & 13 & + & 57 & 12 & \\
\hline 7000 & 206714.135957561 & 206714 & 3 & 15 & 46 & 44 & - \\
\hline 8000 & \(236244 \cdot 72.6801641\) & 236244 & 17 & 26 & 36 & 16 & \\
\hline 9000 & \(265775 \cdot 317659722\) & 265775 & 7 & 37 & 25 & 48 & - \\
\hline 10000 & 295305.90851030 & 295305 & 31 & 48 & 15 & 20 & \\
\hline 20000 & 590611.81702160 & 590611 & 19 & 36 & 30 & 40 & o \\
\hline 30000 & 885917.72553240 & 885917 & 17 & 24 & 46 & - & \\
\hline 40000 & 1181223.63404320 & 1188223 & 15 & 13 & 1 & 20 & - \\
\hline 50000 & 1476529.54255401 & 1476529 & 13 & 1 & 16 & 40 & \(\bigcirc\) \\
\hline 60000 & \(1771835 \cdot 45106481\) & 1771835 & 10 & 49 & 32 & \(\bigcirc\) & \\
\hline 70000 & \(2067141 \cdot 35957561\) & 2067141 & 8 & 37 & 47 & 20 & - \\
\hline 8 c 000 & \(2362447 \cdot 26808641\) & 2362447 & 6 & 25 & 2 & 40 & - \\
\hline 90000 & 2657753.17659722 & 2657753 & 4 & 14 & 18 & 0 & \\
\hline 100000 & 2953959.0851080 & 2053059 & 2 & 2 & 33 & 20 & \\
\hline
\end{tabular}

TABLE VI. concluded.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Lunations.} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{c}
Firft \\
New Moon.
\end{tabular}
D. H. M. S.} & \multicolumn{3}{|l|}{Sun's mean Anomaly.} & \multicolumn{3}{|l|}{Moon's mean Anomaly.} & \multicolumn{3}{|l|}{Sun'smeanDift from Node.} \\
\hline & & & . \(s\) & 50 & & & o & & s & - & \\
\hline 40817 & & \(\begin{array}{lllll}25 & 3 & 2 & 33\end{array}\) & 11 & 24 & 12 & & 13 & 49 & 5 & 9 & \\
\hline 42054 & 340 & 29111325 & 11 & 27 & 33 & 9 & 29 & 11 & 9 & 28 & 47 \\
\hline 43290 & & 464014 & 11 & & & 5 & 18 & 44 & 1 & 17 & 34 \\
\hline \(445^{27}\) & & 814516 & 1 & 1 & & 2 & 4 & & 6 & 7 & \\
\hline 4576 & & 12231 & 11 & 1 S & 30 & 10 & 19 & 28 & & & 29 \\
\hline 47001 & 3800 & 1771251 & 11 & 11 & 51 & 7 & 4 & 50 & 3 & 15 & 56 \\
\hline 48238 & 3900 & \(\begin{array}{llllll}21 & 15 & 23 & 43\end{array}\) & 11 & 115 & 2 & 3 & 20 & 12 & 8 & 5 & 23 \\
\hline 49 & & 25233435 & 1 & 18 & 33 & \(\bigcirc\) & 5 & 34 & \(\bigcirc\) & 24 & 50 \\
\hline & & 191 & 10 & 22 & 48 & 7 & 25 & 7 & & 13 & 37 \\
\hline 54 & & \(\begin{array}{llllll}5 & 3 & 12 & 17\end{array}\) & 10 & 26 & 9 & 4 & 10 & 29 & 9 & & 5 \\
\hline 53185 & & 61123 & 10 & 29 & 31 & & 2 & 51 & & 22 & 32 \\
\hline 54422 & +400 & 131934 & 11 & 12 & 52 & 9 & 11 & 13 & 6 & 11 & 59 \\
\hline & & 18 & 1 & & 13 & 5 & 26 & 35 & 11 & & 27 \\
\hline 56896 & 4 & 22115546 & 11 & 9 & 34 & 2 & 11 & 57 & 3 & 20 & 54 \\
\hline 58133 & 4700 & 2620638 & 11 & 12 & 55 & 10 & 27 & 19 & 8 & 10 & 21 \\
\hline 5036 & 800 & 1153327 & 10 & - 17 & 9 & 6 & 16 & \(5^{2}\) & 1 & 29 & \\
\hline 606 & , & 5234420 & 10 & - 20 & 31 & 3 & 2 & 14 & & & 36 \\
\hline 61843 & 5000 & 1075512 & & 23 & 52 & 11 & 17 & 36 & 9 & 8 & \\
\hline 63080 & 5100 & 141664 & 10 & - 27 & 13 & 8 & & \(5^{3}\) & 1 & 27 & 30 \\
\hline 6431 & & \(19 \bigcirc 1656\) & 11 & \(1 \quad 0\) & & 4 & 18 & 20 & 6 & 16 & 57 \\
\hline & & \(23 \quad 82749\) & 1 & 13 & & 1 & 3 & 42 & 11 & & 25 \\
\hline 6 & 5 & \(27 \quad 163^{8} \quad 41\) & 11 & 1 & & 9 & 19 & 4 & 2 & 25 & 52 \\
\hline 6802 & 53 & 212530 & & 11 & 31 & 5 & & 37 & 7. & 14 & 39 \\
\hline 69 & 5600 & 6201622 & - & - 14 & 52 & 1 & 23 & 59 & - & 4 & 6 \\
\hline 7050 & 700 & 1142715 & & 18 & & 10 & & 21 & & 23 & 34 \\
\hline 71739 & 5800 & \(\begin{array}{llllll}15 & 12 & 38 & 7\end{array}\) & & 121 & & 6 & 24 & 43 & 9 & 13 & \\
\hline 72976 & 5900 & \(19204^{8} 59\) & & - 24 & 56 & 3 & 10 & & 2 & & 28 \\
\hline 742 & 600 & 2445952 & & - 28 & 17 & 11 & 25 & 27 & 6 & 21 & 56 \\
\hline
\end{tabular}

If Dr. Pound's mean Lunation (which we have kept by in making thefe Tables) be added 74212 times to itfelf, the fum will amount to 6000 Julian years 24 days 4 hours 59 minutes 51 feconds 40 thirds; agreeing with the firft part of the laf line of this Table, within half a fecond.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|c|}{Argument. Sun's mean Anomaly.} \\
\hline \multicolumn{7}{|c|}{Subrract} \\
\hline \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
0 \\
00 \\
0 \\
0 \\
0 \\
0
\end{gathered}\right.
\]} & Sign & \[
\operatorname{Sign}^{1}
\] & \[
\operatorname{Sign}^{2}
\] & Signs & \[
\stackrel{4}{4}^{\text {Sigs }}
\] & Signs \\
\hline & H. M. S. & . M. S. & & & & \\
\hline 0 & 00 & \(2 \quad 312\) & 335 & 410 & 339 & 7 \\
\hline \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & \(\begin{array}{rrrr}0 & 4 & 18 \\ 0 & 8 & 35 \\ 0 & 12 & 5 & 1 \\ 0 & 17 & 8 \\ 0 & 21 & 24\end{array}\) & \begin{tabular}{|ccc}
2 & 6 & 55 \\
2 & 10 & 36 \\
2 & 14 & 14 \\
2 & 17 & 52 \\
2 & 21 & 27
\end{tabular} & \[
\begin{array}{lll}
3 & 37 & 10 \\
3 & 39 & 18 \\
3 & 41 & 23 \\
3 & 43 & 26 \\
3 & 45 & 25
\end{array}
\] & \[
\begin{array}{lll}
4 & 10 & 57 \\
4 & 10 & 55 \\
4 & 10 & 49 \\
4 & 10 & 39 \\
4 & 10 & 24
\end{array}
\] & \[
\begin{array}{rrr}
3 & 37 & 19 \\
3 & 35 & 6 \\
3 & 32 & 50 \\
3 & 30 & 30 \\
3 & 28 & 5
\end{array}
\] & \[
\begin{array}{rrr}
2 & 3 & 55 \\
2 & 0 & 1 \\
1 & 56 & 5 \\
1 & 5 & 6 \\
1 & 48 & 4
\end{array}
\] \\
\hline & \(\begin{array}{lll}0 & 25 & 39 \\ 0 & 28 & 55 \\ 0 & 34 & 11 \\ 0 & 38 & 26 \\ 0 & 42 & 39\end{array}\) & \(\begin{array}{rrr}2 & 25 & 9 \\ 2 & 28 & 29 \\ 2 & 31 & 57 \\ 2 & 35 & 22 \\ 2 & 38 & 44\end{array}\) & \(\begin{array}{rrrr}3 & 47 & 19 \\ 3 & 49 & 7 \\ 3 & 50 & 50 \\ 3 & 52 & 29 \\ 3 & 54 & 4\end{array}\) & \(\begin{array}{rrr}4 & 10 & 4 \\ 4 & 9 & 39 \\ 4 & 9 & 10 \\ 4 & 8 & 37 \\ 4 & 7 & 59\end{array}\) & \[
\begin{array}{lll}
3 & 25 & 35 \\
3 & 23 & 0 \\
3 & 20 & 20 \\
3 & 17 & 35 \\
3 & 14 & 49
\end{array}
\] & \[
\begin{array}{lll}
1 & 41 & 1 \\
1 & 39 & 56 \\
1 & 35 & 49 \\
1 & 31 & 41 \\
1 & 27 & 31
\end{array}
\] \\
\hline \[
15
\] & \(\begin{array}{rrrr}0 & 46 & 52 \\ 0 & 51 & 4 \\ 0 & 55 & 17 \\ 0 & 59 & 27 \\ 1 & 3 & 30\end{array}\) & \begin{tabular}{|llr}
2 & 4 & 2 \\
2 & 45 & 18 \\
2 & 48 & 30 \\
2 & 51 & 40 \\
2 & \(5+\) & 48
\end{tabular} & \(\begin{array}{rrrr}3 & 55 & 35 \\ 3 & 57 & 2 \\ 3 & 5 & 8 & 27 \\ 3 & 59 & 49 \\ 3 & 1 & 7\end{array}\) & \[
\begin{array}{lll}
4 & 7 & 16 \\
4 & 6 & 20 \\
4 & 5 & 37 \\
4 & 4 & 41 \\
4 & 3 & 40
\end{array}
\] & \[
\begin{array}{rrr}
3 & 11 & 59 \\
3 & 9 & 6 \\
3 & 6 & 10 \\
3 & 3 & 10 \\
3 & 0 & 7
\end{array}
\] & \[
\begin{array}{rrr}
1 & 23 & 19 \\
1 & 19 & 5 \\
1 & 14 & 49 \\
1 & 10 & 33 \\
1 & 6 & 15
\end{array}
\] \\
\hline \[
\begin{aligned}
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}
\] & \[
\left.\begin{array}{rrr}
1 & 7 & 45 \\
1 & 1 & 1 \\
1 & 16 & 5 \\
1 & 20 & 6 \\
1 & 24 & 10
\end{array} \right\rvert\,
\] & \[
\left.\begin{array}{llll}
2 & 57 & 5 & 3 \\
3 & 0 & 54 \\
3 & 3 & 5 & 1 \\
3 & 6 & 45 \\
3 & 9 & 36
\end{array} \right\rvert\,
\] & \begin{tabular}{lll}
4 & 2 & 18 \\
4 & 3 & 23 \\
4 & 4 & 22 \\
4 & 5 & 18 \\
4 & 6 & 10
\end{tabular} & \[
\begin{array}{rrr}
4 & 2 & 35 \\
4 & 1 & 26 \\
4 & 0 & 12 \\
3 & 58 & 52 \\
3 & 57 & 27
\end{array}
\] & \[
\begin{array}{llr}
2 & 57 & 0 \\
2 & 53 & 49 \\
2 & 50 & 36 \\
2 & 47 & 18 \\
2 & 43 & 57
\end{array}
\] & \(\begin{array}{rrr}1 & 1 & 56 \\ 0 & 57 & 36 \\ 0 & 53 & 15 \\ 0 & 48 & 52 \\ 0 & 44 & 28\end{array}\) \\
\hline 25 & \[
\begin{array}{llr}
1 & 28 & 12 \\
1 & 32 & 12 \\
1 & 36 & 10 \\
1 & 40 & 6 \\
1 & 44 & 1
\end{array}
\] & \[
\begin{array}{rrr}
3 & 12 & 24 \\
3 & 1 & 5 \\
3 & 17 & 5 \\
3 & 20 & 30 \\
3 & 23 & 5
\end{array}
\] & \[
\begin{array}{lll}
4 & 6 & 58 \\
4 & 7 & 41 \\
4 & 8 & 21 \\
4 & 8 & 57 \\
4 & 9 & 29
\end{array}
\] & \[
\begin{array}{rrr}
3 & 5 & 59 \\
3 & 54 & 26 \\
3 & 5 & 49 \\
3 & 5 & 1 \\
3 & 49 & 26
\end{array}
\] & \[
\begin{array}{llr}
2 & 40 & 33 \\
2 & 37 & 6 \\
2 & 33 & 35 \\
2 & 30 & 2 \\
2 & 26 & 26
\end{array}
\] & \[
\begin{array}{lll}
0 & 35 & 36 \\
0 & 31 & 10 \\
0 & 26 & 44 \\
0 & 22 & 17
\end{array}
\] \\
\hline 3 & \[
\begin{array}{lll}
1 & 47 & 54 \\
1 & 51 & 46 \\
1 & 55 & 37 \\
1 & 59 & 26 \\
2 & 3 & 12
\end{array}
\] & \[
\left.\begin{array}{rrr}
3 & 25 & 36 \\
3 & 28 & 3 \\
3 & 30 & 26 \\
3 & 32 & 45 \\
3 & 35 & 0
\end{array} \right\rvert\,
\] & \[
\begin{array}{rrr}
4 & 9 & 55 \\
4 & 10 & 10 \\
4 & 10 & 33 \\
4 & 10 & 45 \\
4 & 10 & 53
\end{array}
\] & \[
\begin{array}{lll}
3 & 47 & 38 \\
3 & 45 & 44 \\
3 & 43 & 45 \\
3 & 41 & 40 \\
3 & 39 & 30
\end{array}
\] & & \[
\begin{array}{ll}
0 & 17 \\
0 & 17 \\
0 & 8 \\
0 & 4 \\
0 & 4 \\
0 & 0
\end{array}
\] \\
\hline & Signs & \[
\stackrel{10}{\operatorname{Sign} \mathrm{~s}}
\] & \[
\operatorname{Signs}^{9}
\] & \[
\stackrel{8}{\text { Signs }}
\] & \[
\operatorname{Signs}^{7}
\] & \[
\begin{gathered}
6 \\
\operatorname{signs}
\end{gathered}
\] \\
\hline
\end{tabular}

T A B LE XII. The Sun's mean Longitude, Motion, and Anomaly: Old Stile.

TABLE

T A B LE XII. concluded.

In Leap years, after Feliruary, add one dav, and one day's motion.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{A B I, E XIIL. Equction of the iniz's Center, or the difference between bis mean and true Place. Argument.} \\
\hline \multicolumn{7}{|c|}{Subiract} \\
\hline \[
\begin{aligned}
& 6 \\
& 0
\end{aligned}
\] & Sign. & Sign. & \[
\text { Signs. }^{2}
\] & signs. & \[
\stackrel{4}{4}
\] & Signs. \\
\hline & & & & & & \\
\hline & \(\bigcirc\) & & & & 1 & c \\
\hline & \[
\begin{array}{llll}
0 & 1 & 59 \\
0 & 3 & 57 \\
0 & 5 & 56 \\
0 & 7 & 54 \\
0 & 9 & 52
\end{array}
\] & \[
\begin{array}{llll}
0 & 5 & 3 \\
1 & 0 & 12 \\
1 & 1 & 53 \\
1 & 3 & 33 \\
1 & 5 & 12
\end{array}
\] & \[
\left.\begin{array}{rrr}
1 & 40 & 7 \\
1 & 41 & 6 \\
1 & 4.2 & 3 \\
1 & 42 & 59 \\
1 & 43 & 52
\end{array} \right\rvert\,
\] & \begin{tabular}{l}
1553 \\
1553 \\
1553 \\
1553 \\
1552
\end{tabular} & \[
\begin{array}{rrr}
1 & 40 & 12 \\
1 & 39 & 10 \\
138 & 6 \\
1 & 37 & 0
\end{array}
\] & \begin{tabular}{llll}
0 & 57 & 729 \\
0 & 55 & 10 & 26 \\
0 & 53 & 30 & 27 \\
0 & 51 & 40 & 26 \\
0 & 49 & 49 & 25
\end{tabular} \\
\hline & \begin{tabular}{l}
01150 \\
01348 \\
01546 \\
01743 \\
01940
\end{tabular} & \[
\begin{array}{lll}
1 & 6 & 50 \\
1 & 8 & 27 \\
1 & 10 & 2 \\
1 & 11 & 30 \\
1 & 1 & 3
\end{array}
\] & \[
\begin{array}{lll}
1 & 45 & 34 \\
1 & 4 & 22 \\
1 & 47 & 8
\end{array}
\] & \[
\begin{array}{llll}
1 & 55 & 15 \\
1 & 55 & 3 \\
1 & 5 & 3 \\
1 & 5 & 50 \\
1 & 54 & 35 \\
1 & 54 & 17
\end{array}
\] & \[
\begin{array}{llr}
1 & 34 & 43 \\
1 & 33 & 32 \\
1 & 32 & 19 \\
1 & 3! & 4 \\
1 & 29 & 47
\end{array}
\] & \[
\begin{array}{llll}
0 & 47 & 57 & 24 \\
0 & 46 & 5 & 23 \\
0 & 44 & 11 & 22 \\
0 & 42 & 16 & 21 \\
0 & 40 & 21 & 20
\end{array}
\] \\
\hline \[
15
\] & \[
\begin{array}{llll}
0 & 21 & 37 \\
0 & 23 & 53 \\
0 & 25 & 20 \\
0 & 27 & 25 \\
0 & 29 & 20
\end{array}
\] & \[
\begin{array}{lll}
1 & 1 & 4 \\
1 & 4 & 11 \\
1 & 17 & 11 \\
1 & 19 & 8 \\
1 & 20 & 81
\end{array}
\] & \[
\begin{array}{lll}
1 & 4 & 4 \\
1 & 3 & 35 \\
1 & 49 & 15 \\
1 & 49 & 54 \\
1 & 50 & 30
\end{array}
\] & \[
\begin{array}{lll}
1 & 53 & 51 \\
1 & 53 & 36 \\
1 & 5 & 12 \\
1 & 5 & 12 \\
1 & 5 & 48
\end{array}
\] & \[
\begin{array}{ll}
1 & 28 \\
1 & 27 \\
1 & 25 \\
1 & 24 \\
1 & 23
\end{array}
\] & \[
\begin{array}{lllll}
0 & 38 & 25 & 1 c \\
0 & 36 & 23 & 1 \\
0 & 34 & 30 & 17 \\
0 & 3 & 3 & 3 z & 10 \\
0 & 30 & 3 & 1 & 15
\end{array}
\] \\
\hline \[
\left\{\begin{array}{l}
17 \\
18 \\
19 \\
20
\end{array}\right.
\] & \[
\begin{array}{lll}
0 & 31 & 15 \\
0 & 3 & 5 \\
0 & 3 & 9 \\
0 & 3 & 2 \\
0 & 3 & 55 \\
0 & 38 & 47
\end{array}
\] & \[
\begin{array}{lll}
1 & 21 & 59 \\
1 & 23 & 22 \\
1 & 24 & 44 \\
1 & 26 & 5 \\
1 & 27 & 2
\end{array}
\] & \[
\left.\begin{array}{llll}
1 & 5 & 1 & 37 \\
1 & 5 & 2 & 0 \\
1 & 5 & 2 & 3 \\
1 & 53 & 3 \\
1 & 5 & 3 & 2
\end{array} \right\rvert\,
\] & \[
\begin{array}{llll}
1 & 5 & 1 & 48 \\
1 & 5 & 1 & 1 \\
1 & 5 & 1 \\
1 & 5 & +1 \\
1 & 50 & 5 \\
1 & 40 & 20
\end{array}
\] & \[
\begin{array}{lll}
1 & 21 & 1 \\
1 & 20 & 9 \\
1 & 18 & 6 \\
1 & 17 & 5 \\
1 & 1 & 5 \\
\hline
\end{array}
\] & \begin{tabular}{lllll}
0 & 28 & 3.1 & 14 \\
0 & 26 & 3 & 14 \\
0 & 2 & 3 & 1 & 3 \\
0 & 2 & 3 & 12 \\
0 & 2 & 11 \\
0 & 20 & 30 & 10
\end{tabular} \\
\hline & \begin{tabular}{l}
04030 \\
04230 \\
\(0+420\) \\
0469 \\
04757
\end{tabular} & \[
\begin{array}{llll}
1 & 29 & 57 \\
1 & 3 & 11 \\
1 & 3 & 12 & 2, \\
: & 3 & 3 & 35
\end{array}
\] & \begin{tabular}{l}
15350 \\
\(15+10\) \\
\(15+2.8\) \\
\(15+44\) \\
15458
\end{tabular} & \[
\begin{array}{ccc}
1 & 48 & 46 \\
1 & 48 & 3 \\
1 & 47 & 1 \\
1 & 46 & 32 \\
1 & 45 & 44
\end{array}
\] & \[
\begin{array}{ccc}
1 & 13 & 59 \\
1 & 12 & 24 \\
1 & 10 & 47 \\
1 & 9 & 9 \\
1 & 7 & 29
\end{array}
\] & \[
\begin{array}{llll}
0 & 18 & 28 \\
0 & 16 & 26 \\
0 & 1 & 2 & 2 \\
0 & 12 & 21 \\
0 & 10 & 18
\end{array}
\] \\
\hline & \[
\begin{array}{llll}
0 & 49 & 45 \\
0 & 5 & 1 \\
0 & 5 & 32 \\
0 & 53 & 18 \\
0 & 55 & 3 \\
0 & 56 & 47
\end{array}
\] & \[
\begin{array}{lll}
1 & 34 & 45 \\
1 & 35 & 53 \\
1 & 36 & 59 \\
1 & 38 & 3 \\
1 & 39 & 6
\end{array}
\] & \begin{tabular}{l}
15516 \\
15520 \\
\(1552 S^{\prime}\) \\
1
1
1 531 \\
15537
\end{tabular} & \[
\begin{array}{lll}
1 & 4+ & 4 \\
1 & 4+ \\
1 & 4 & 1 \\
1 & 43 & 7 \\
1 & 42 & 10 \\
1 & 41 & 12
\end{array}
\] & \[
\begin{array}{lll}
1 & 5 & 49 \\
1 & 4 & 7 \\
1 & 2 & 24 \\
1 & 0 & 37 \\
0 & 58 & 53
\end{array}
\] & \[
\begin{array}{ccc}
0 & S & 1 \\
0 & 6 & 11 \\
0 & 4 & 7 \\
0 & 2 & 4 \\
0 & 0 & 0
\end{array}
\] \\
\hline & Signs. & Signs. & Signs. & Signs. & \[
\operatorname{sig}^{7} n .
\] & \[
{ }_{\text {Signs. }}^{6}
\] \\
\hline
\end{tabular}

To calculate the true time of New or Full Moors.
Precept I. If the required time be within the limits of the I 8 th century, write out the mean time of New Moon in March, for the propofed year, from Table I. in the Old Stile, or from Table II. in the New; together with the mean Anomalies of the Sun and Moon, and the Sun's mean Diftance from the Moon's afcending Node. - If you want the time of Full Moon in March, add the half Lunation at the foot of Table III. with its Anomalies, \&x. to the former numbers, if the New Moon falls before the 15th of March; but if it falls after, fubtract the half Lunation, with the Anomalies, \&xc. belonging to it, from the former numbers, and write down the refpective fums or remainders.
II. In thefe additions or fubtractions, obferve, that 60 feconds make a minute, 60 minutes make a degree, 30 degrees make a fign, and 12 figns make a circle. When you exceed 12 figns in addition, reject 12 , and fet down the remainder. When the number of figns to be fubtracted is greater than the number you fuburact from, acd 12 figns to the leffer number, and then you will have a remainder to fet down.-In the Tables, figns are marked thuss, degrees thus \({ }^{\circ}\), minutes thus', and feconds thus"

III: When the required New or Full Moon is in any given month after March, write out as many Lunations, with their Anomalies, and the Sun's diftance from the Node, from Table III, as the given month is after March; fetting them in order below the numbers taken out for March.
IV. Add all thefe together, and they will give the mean time of the required New or Full Moon, with the Mean Anomalies and Sun's mean diftance from the afcending Node, which are the Arguments for finding the proper Fquations.
V. Wisis
V. With the number of days added together, enter Table IV. under the given month; and againft that number you have the day of mean New or Full Moon in the left hand column, which fet before the hours, minutes, and feconds, already found.

But (as it will fometimes happen) if the faid number of days fall fhort of any in the column under the given month, add one Lunation and its Anomalies, \&c. (from Table III.) to the forefaid fums, and then you will have a new fum of days wherewith to enter Table IV. under the given month, where you are fure to find it the fecond time, if the firlt falls fhort.
VI. With the figns and degrees of the Sun's Anomaly, enter Table VII. and therewith take out the annual or firft Equation for reducing the mean Syzygy to the true; taking care to make proportions in the Table for the odd minutes and feconds of Anomaly, as the Table gives the Equation only to whole degrees.

Obferve, in this and every other cafe of finding Equations, that if the figns are at the head of the Table, their degrees are at the left hand, and are reckoned downward; but if the figns are at the foot of the Table, their degrees are at the right hand, and are counted upward; the equation being in the body of the Table, under or over the figns, in a collateral line with the degrees.-The titles Add or Subtract at the head or foot of the Tables where the figns are found, fhew whether the Equation is to be added to the mean time of New or Full Moon, or to be fubtracted from it. In this Table, the Equation is to be fubtracted if the figns of the Sun's Anomaly are found at the head of the Table; but it is to be added, if the figns are at the foot.
VII. With the figns and degrees of the Sun's mean Anomaly, enter Table VIII. and take out the Equation of the Moon's mean Anomaly; fub-
tract this Equation from her mean Anomaly, if the figns of the Sun's Anomaly be at the head of the Table, but add it if they are at the foot; the refult will be the Moon's equated Anomaly, with which enter Table IX, and take out the fecond Equation for reducing the mean to the true time of New or Full Moon; adding this Equation, if the figns of the Moon's Anomaly are at the head of the Table, but fubtracting it if they are at the foot, and the refult will give you the mean time of the required New or Full Moon twice equated, which will be fufficiently near for common alma-nacks.-But when you want to calculate an Eclipfe, the following Equations muft be ufed: thus,
VIII. Subtract the Moon's equated Anomaly from the Sun's mean Anomaly, and with the remainder in figns and degrees, enter Table X , and take out the third Equation, applying it to the former equated time, as the titles Add or Subtrait do direet.
IX. With the Sun's mean diftance from the afcending Node enter Table XI, and take out the Equation anfwering to that argument, adding it to, or fubtracting it from, the former equated time, as the titles direet, and the refult will give the time of New or Full Moon, agreeing with well regulated clocks or watches, very near the truth. Bur, to make it agree with the folar, or apparent time, apply the Equation of natural days, found in the Tiables (from page 163 to page 175) as it is Leapyear, or the firft, fecond, or third after.

The method of calculating the time cf any New or full Moon without the limits of the 18 th century, will be hown further on. And a few Exanples, compared with the Precepts, will make the whole work plain.
N. B. The I ables begin the day at noon, and reckon forward from thence to the noon follow-ing.-Thus, Marchthe 3 ift, at 22 h .30 min. 2 fec. of tabular time, is Aprilift (in commonreckoning) at 30 min . 25 fec. after 10 o'clock in the morning.
[II
\begin{tabular}{|c|c|c|c|c|}
\hline By the Precepts, & New Moon. & Sun's Anom. & Moon's Anom. & un fro. Node. \\
\hline & D. H. M. S. & S 0 & 80 & 0 \\
\hline March \(\mathrm{I}_{764}\), & \(\begin{array}{lllll}2 & 8 & 55 & 36\end{array}\) & \(8 \quad 2200\) & \(101335 \quad 21\) & II \(4544^{3}\) \\
\hline Add 1 Lunation, & 2912443 & 029619 & -25490 & 04014 \\
\hline Mean New Moon, Firft Equation, & \(\begin{array}{rrrr}31 & 223939 \\ + & 41040\end{array}\) & \(\begin{array}{rrrrr}9 & 1 & 26 & 19 \\ 11 & 10 & 59 & 18\end{array}\) & 11 92421815 & - 5352 \\
\hline Time once equated, Second Equation, & \[
\begin{array}{llll}
32 & 1 & 50 & 19 \\
- & 3 & 24 & 49
\end{array}
\] & \[
\begin{array}{cccc}
9 & 20 & 27 \\
\text { Arg. } 3 \text { d equat. }
\end{array}
\] & \(11 \quad 10 \quad 5918\) Arg. 2 d equat. & and Arg. \(4^{\text {th }}\) equation. \\
\hline T'ime twice equat. 'Third Equation, & 31
22
\(+\quad 4330\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{So the mean time is 22 h . 30 min .25 fec . after the Noon of the 31 ft Marcb; that is, April ift, at 30 min .25 fec . after X in the morning, But the apparent time is 26 min . 37 fec . after X in the morning.}} \\
\hline 'Time thrice equat. Fourth Equation, & 312230

+18 & & & \\
\hline True New Moon, Equation of days, & \(3123 \quad 3025\)
\(-\quad 348\) & & & \\
\hline Apparent time, & \(13122 \quad 2637\) & & & \\
\hline
\end{tabular}
E X A M P L E II.

To calculate the time of Nerw and Full Moon in a given year and month of any particular century between the Cbrifian Era and the 18 th century.
Precept I. Find a year of the fame number in the 18 th century with that of the year in the century propofed, and take out the mean Time of New Moon in March, Old stile, for that year, with the mean Anomalies and Sun's mean Diftance from the Node at that time, as already taught.
II. Take as many complete centuries of years from Table VI. as, when fubtracted from the abovefsid year in the 18ch century, will anfwer to the given year; and take out the firft mean New Moon and its Anomalies, \(\& \tau\). be-
longing to the faid centuries, and fet them below thofe taken out for March in the 18 th century.
III. Subtract the numbers belonging to thefe centuries, from thofe of the 18 th century, and the remainders will be the mean Time and Anomalies, \&c. of New Moon in March, in the given year of the century propofed.- Then, work in all refpects for the true time of New or Full Moon, as thewn in the above Precepts and Examples.
IV. If the days annexed to thefe centuries exceed the number of days from the beginning of Marcb taken out in the 18th century, add a Lunation and its A nomalies, \&c. from Table III, to the Time and Anomalies of New Moon, in March, and then proceed in all refpects as above.-This circumftance happens in Example V.

To calculate the true time of New or Full Moon in any given year and montb before the Chrifian Ara.
Precept I. Find a year in the i 8 th century, which being added to the given number of years before Chrift diminifhed by one, fhall make a number of complete centuries.
II. Find this number of centuries in Table VI. and fubtract the Time and Anomalies belonging to it from thofe of the mean New Moon in March, the above-found year of the 18th century; and the remainder will denote the Time and Anomalies, \&cc. of the mean New Moon in March, the given year before Chrift.-Then, for the true time of that New Moon, in any month of that year, proceed in the manner taught above.

Thefe Tables are calculated for the meridian of London; but they will ferve for any other place, by fubtracting four minutes from the tabular time, for every degree that the meridian of the given place is weftward of London, or adding four minutes for every degree that the meridian of the given place is eaftward : as in
Required the true mean time of Full Moon at Alexandria in EEgypt, long. \(30^{\circ}, 21^{\prime}\), \(45^{5} \mathrm{E}\) in Sepiember,
New Moon: Sun's Anom. Moon's Anom Sun tro. Node.:
\(\begin{array}{rrrrr}1 & 3 & 8 & 24 \\ 1 & 3 & 50 & 14 \\ 1 & 4 & 40 & 14 \\ 1 & 4 & 3 & 3\end{array}\)
\(\left|\begin{array}{cc}\infty & 0 \\ m & \\ \infty & \text { un } \\ +n & \forall \\ + & n \\ 0 & 0\end{array}\right|\)

\(\left\{\begin{array}{l}0 \\ \text { O } \\ m \\ n \\ m \\ m\end{array}\right.\) 5
Thus it appears, that the crue mean time of Full Moon at Alexandria, in September,
Old Stile, the year before Chrift 201 , was

D. H. M. S.

\footnotetext{
By the Precepts.
}
March 1800,
Add 1 Lunation,
From the Sum, 'sieak \(000 z \cdot 1\) qus N.M. hef Chr. 20I. Add \(\left\{\begin{array}{l}6 \text { Lunations, } \\ \text { half Lunat. }\end{array}\right.\) Full Moon, Sept. Full Moon, Sept.
Firf Equation, -גEnba a دиo دu!!
 -Jenba asma aw!L 'uo!jenb7 ps!yL

 ‘иорио7 Је วш!! •^L Add for Alexandria, True time there,
\[
\frac{1}{s} \frac{1}{0}
\]

v..
4
Required the true mean time of Full Moon at Babylon, long. \(3^{60}\), \(25^{\prime}\), \(15^{\prime \prime}\) E. in
E

 patt IV in the morning; but at Babylon, the

By the Precepts. March 1793,
Subtr. 5800 years, N.M.bef.Chr. 4007 'suorzeunT 4\(\}\) PPV Add \{nalt Lunat. Full Moon, Oczober,言

 'иопепйа рич, L
 cuolyenbat qunod

To calculate the true time of New or Full Moon in any given year and montb after the 18 th century.

Precept I. Find a year of the fame number in the 18 th century with that of the year propofed, and take out the mean Time and Anomalies, \&xc. of New Moon in March, Old Stile, for that year, in Table I.
II. Take fo many years from Table VI. as when added to the above-mentioned year in the 18 th century, will anfwer to the given year in which the New or Full voon is required; and take out the firft New Moon, with its Anomalies, for thefe complete centuries.
III. Add all thefe together, and then work in all refpects as hewn above, only remember to fubtract a Lunation and its Anomalies, when the above-mentioned addition carries the New Moon beyond the 3 ritt of March; as in the following example:

In keeping by the Old Stile, we are always fure to be right, by adding or fubtracting whole hundreds of years to or from any given year in the 18 ch century. But in the New Stile we may be very apt to make miftakes, on account of the Leap-year's not coming in regularly every fourth year: And therefore, when we go without the limits
limits of the 18 th century, we had beft keep to the Old Stile, and at the end of the calculation reduce the time to the New. Thus, in the 22d century, there will be 14 days difference between the Stiles; and therefore, the true time of New Moon in this laft Example being reduced to the New Stile, will be the 22 d of \(\mathfrak{F u l y}\), at 22 minutes 53 feconds paft VI in the evening.

To calculate the true place of the Sun for any givert moment of time.

Precept I. In Table XII. find the next leffer year in number to that in which the Sun's place is fought, and write out his mean Longitude and Anomaly anfwering thereto: to which add his mean Motion and Anomaly for the complete refidue of years, months, days, hours, minutes, and feconds down to the given time, and this will be the Sun's mean Place and Anomaly at that time, in the Old Stile, provided the faid time be in any year after the Chriftian æra. See the firft following Example.
II. Enter Table XIII. with the Sun's mean Anomaly, and making proportions for the odd minutes and feconds thereof, take out the Equation of the Sun's center: which, being applied to his mean Place, as the title Add or SubtraEt directs, will give his true place or Longitude from the Vernal Equinox, at the time for which it was required.
III. To calculate the Sun's place for any time in a given year before the Chriftian æra, take out his mean Longitude and Anomaly for the firlt year thereof, and from thefe numbers fubtract the mean Motions and Anomalies for the complete hundreds or thoufands next above the given year; and, to the remainders, add thofe for the refidue of years, months, \&cc. and then work in all refpects as above. See the fecond Example following.

Examples from the preceding Tables.
EXAMPLEI.

Examples from the preceding Tables．
en
Required the Sun＇s true place，Oetober \(23 d\) Old Stile，at 16 bours 57 minutes paft noon，in the 4008 th year
before the year of Cbrift I ；which was the 4007 th before the year of bis birth，and the year of the Julian
\begin{tabular}{|l|l|}
\hline Sun＇s Longitude． & Sun＇s Anomaly． \\
\hline
\end{tabular}
s o ， 1 s s o ，＂
\(\rightarrow\) s
－
[
By the Precepts．
\[
7
\]

1 同号品

11 1 period 706？
From the radical numbers after Chrif Subtract thofe for 5000 complete years

Sun＇s mean place at the given time Equation of the Sun＇s center fubtract
Sun＇s true place 2t the fame time ＿

So that in the meridian of London, the Sun was then juft entering the fign \(\bumpeq\) Libra; and confequently was upon the point of the Autumnal Equinox.

If to the above time of the Autumnal Equinox at London, we add 2 hours 25 minutes 4 feconds for the Longitude of Babylon, we thall have for the time of the fame Equinox, at that place, \(\mathrm{O}_{\mathrm{c}}\) tober 23d, at ig hours 22 minutes 4 I feconds; which in the common way of reckoning, is October 24 th, at 22 minutes 41 feconds paft VII in the morning*.

And it appears by Example VI, that in the fame year, the true time of Full Moon at Babylon was October 23 d , at 42 minutes 46 feconds after VI in the morning; fo that the Autumnal Equinox was on the day next after the day of Full Moon.-The Dominical letter for that year was \(G\), and confequently the 24th of OEFober was on a Wediredday.

\footnotetext{
* The reafon why this calculation makes the Autumnal Equinox, in the year of the fulian Period 706 , to be two days fooner than the time of the fame Equinox mentioned in page 153, is, that in that page only the mean time is taken into the account, as if there was no Equation of the Sun's motion.

The Equation at the Autumnal Equinox then, did not exceed an hour and a quarter, when reduced to time.- But, in the year of Chrift 1756, (which was \(576_{3}\) years after) the Equation at the Autumnal Equinox amounted to 1 day \(2 z\) hours 24 minutes, by which quantity the true time fell later than the mean. - So that, if we confider the true time of this laft-mentioned Equinox, only as mean time, the mean Motion of the Sun carried thence back to the Autumnal Equinox in the year of the fulian Period 706, will fix it to the 25 th of Ocfober in that year.
}

To find the Sun's diftance from the Moon's afcending Node, at the time of any given New or Full Moon; and confequently, to know whether there is ain Eclipfe at that time, or not.

The Sun's diftance from the Moon's afcending Node is the argument for finding the Moon's fourth Equation in the Syzygies, and therefore it is taken into all the foregoing Examples in finding the times of thefe Phenomena.-Thus, at the time of mean New Moon in April 1764 , the Sun's mean Diftance from the afcending Node, is \(0^{\circ} 5^{\circ} 35^{\prime} 2^{\prime \prime}\). See Example I. p. 320.

The defcending Node is oppofite to the afcending one, and they are juft fix Signs diftant from each other.

When the Sun is within 17 degrees of either of the Nodes at the time of New Moon, he will be eclipfed at that time: and when he is within 12 degrees of either of the Nodes at the time of Full Moon, the Moon will be then eclipfed. - Thus we find that there will be an Eclipfe of the Sun at the time of New Moon in April, 1764.

But the true time of that New Moon comes out by the Equations to be 50 minutes 46 feconds later than the mean time thereof, by comparing thefe times in the above Example: and therefore, we muft add the Sun's motion from the Nade during that interval to the above mean Diftance \(0^{\prime} 5^{\circ} 35^{\prime} 2^{\prime \prime}\), which motion is found in Table XII. for 50 minutes 46 feconds, to be \(2^{\prime} 12^{\prime \prime}\). And to this we muft apply the Equation of the Sun's mean Diftance from the Node, in Table XV. found by the Sun's Anomaly, which, at the mean time of New Moon in Example I. is \(9^{3} 1^{\circ} 26^{\prime} 19^{\prime \prime}\); and then we thall have the Sun's true Diftance from the Node, at the true time of New Moon, 'as follows:

> Sun from Node.

At the mean time of New Moon in?
April 1764 - \(\} 0535\) 2
Sun's motion from the \(\} 50\) minutes
210
Node for - \(\int_{46 \text { feconds }}\)
2
\(\left.\begin{array}{l}\text { Sun's mean diftance from Node at } \\ \text { true New Moon }\end{array}\right\}\) ○ 537 if
Equation of mean diftance from
Node, add - - \(\}\)
250
Sun's true diftance from the af- \(\}\)
ending Node - - \(\} 0742\) It which, being far within the above limit of 17 degrees, hews that the Sun mutt then be eclipfed. And now we fall thew how to project this, or any other eclipfe, either of the Sun or Moon.

\section*{To project an Eclipse of the Sun.}

In order to this, we muff find the ten following Elements, by means of the Tables.
I. The true time of conjunction of the Sun and Moon; and at that time, 2. The femidiameter of the Earth's diff, as pen from the Moon, which is equal to the Moon's horizontal parallax. 3. The Sun's diftance from the folftitial Colure to which he is then neareft. 4. The Sun's declination. 5. The angle of the Moon's vifible path with the Ecliptic. 6. The Moon's latitude. 7. The Moon's true horary motion from the Sun. 8. The Sun's femidiamerer, 9. The Moon's. 10. The fermidiameter of the Penumbra.

We fhall now proceed to find there Elements for the Sun's Eclipfe in April \(\mp ; 64\).

Fo find the true time of Nee Moon. This, by Example I. p. 320 , is found to be on the firth day of the fair month, at 30 ininutes 25 feconds after X in the morning.
2. To find the Moon's borizontal parallax, or Semidiameter of the Earth's dijc, as feen from the Moon. Enter Table XVII. with the figns and degrees of the Moon's Anomaly (making proportions, becaufe the Anomaly is in the Table only to every 6th degree), and thereby take out the Moon's horizontal parallax; which, for the above time, anfwering to the A nomaly \(1 \mathrm{I}^{5} 9^{\circ} 24^{\prime} 2 \mathbf{1}^{\prime \prime}\), is \(54^{\prime} 43^{\prime \prime}\).
4. To find the Sun's diffance from the neareft SolAtice, viz. the beginning of Cancer, which is \(3^{3}\) or \(90^{\circ}\) from the beginning of Aries. It appears by the Example on page 328 (where the Sun's place is calculated to the above time of New Moon), that the Sun's longitude from the beginning of Aries is then \(0^{5} 12010^{\prime} 7^{\prime \prime}\), that is, the Sun's place at that time is \(r\) Aries, \(12^{\circ} 10^{\prime} 7^{\prime \prime}\).

Therefore from - - 3000 Subtract the Sun's longitude or place o 12 I2 10

Remains the Sun's diffance from
the Solttice 厅 -- \(\}=2174953\) Or \(77^{\circ} 49^{\prime} 53^{\prime \prime}\); each fign containing 30 degrees. 4. To find the Sun's declination. Enter Table XIV. with the Signs and degrees of the Sun's true place, viz. \(0^{s} 120\), and making proportion for the \(10^{\prime} 7^{\prime \prime}\), take out the Sun's declination anfwering to his true place, and it will be found to be \(4^{\circ} 49^{\prime}\) North.
5. To find the Moon's latitude. This depends on her diftance from her afcending Node, which is the fame as the Sun's diftance from it at the time of New Moon; and with this the Moon's Latitude is found in Table XVI.

Now we have already found, that the Sun's equated diftance from the afcending Node, at the time of New Moon in April 1764 , is \(0^{5} 7^{\circ} 42^{\prime} 14^{\prime \prime}\). See the preceding page.

Therefore, enter Table XVI. with ofigns at the top, and 7 and 8 degrees at the left hand, and take out \(36^{\prime}\) and \(39^{\prime \prime}\), the latitude for \(7^{\circ}\); and
\(41^{\prime} 51^{\prime \prime}\), the latitude for \(8^{\circ}\) : and by making proportion between thefe latitudes fur the \(42^{\prime} \mathbf{I}_{4}^{\prime \prime}\) by which the Moon's diftance from the Node exceeds 7 degrees; her true lacitude will be found to be \(40^{\prime} 18^{\prime \prime}\) north afcending.
6. To find the Moon's true borary motion from the Sun. With the Moon's Anomaly, viz. \(11^{5} 9^{\circ} 24^{\prime}\) 21", enter Table XVII. and take out the Moon's horary motion; which, by making proportion in that Table, will be found to be \(30^{\prime} 22^{\prime \prime}\). Then, with the Sun's Anomaly, \(9^{5} 1^{\circ} 26^{\prime} 19^{\prime \prime}\), take out his horary motion \(2^{\prime} 28^{\prime \prime}\) from the fame Table: and fubtracting the latter from the former, there will remain \(27^{\prime} 54^{\prime \prime}\) for the Moon's true horary morion from the Sun.
7. To find the angle of the Moon's vifible patb with the Ecliptic. This, in the projection of Eclipfes, may be always rated at \(5^{\circ} 35^{\prime}\), without any fenfible error.

8, 9. To find the Semidiameters of the Sun and Moon. Thefe are found in the fame Table, and by the fame Arguments, as their horary Motions.-In the prefent cafe the Sun's Anomaly gives his femidiameter \(16^{\prime} 6^{\prime \prime}\), end the Moon's Anomaly gives her femidiameter \(14^{\prime} 57^{\prime \prime}\).
10. To find the femidianneter of the Penumbra. Add the Moon's femidiameter to the Sun's, and their fum will be the femidiameter of the Penumbra, viz. 3 I' \(^{\prime} 3^{\prime \prime}\).

Now collect thefe Elements, that they may be found the more readily when they are wanted in the conftruction of this Eclipfe.
1. True cime of New Moon in \(\left.\} \begin{array}{l}\text { April } 1764 \\ 103025 \\ \hline 11\end{array}\right)\)
2. Semidiameter of the Earth's difc 05443
3. Sun's dift. from the neareft Solft. 774953
4. Sun's declination, North 4490
5. Moon's lacitude, North afcending o 40 is
6. Moon's

\begin{tabular}{|c|c|}
\hline 7. Angle of the Ecliptic & \[
535 \circ
\] \\
\hline n's femidiameter & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{To project an Eclipje of the Sun geometrically.}

Make a fcale of any convenient length, as \(A C\), and divide it into as many equal parts as the Earch's femi-difc contains minutes of a degree, which, at the time of the Eclipfe in April 1764, is \(54^{\prime} 43^{\prime \prime}\). Then, with the whole length of the fcale as a radius, defrribe the femicircle \(A M B\) upon the center \(C\); which femicircle fhall reprefent the northern half of the Earth's enlightened difc, as feen from the Sun.

Upon the center \(C\) raife the ftraight line \(C H\),
 be a part of the Ecliptic, and CH its Axis.

Being provided with a good fector, open it to the radius \(C A\) in the line of chords; and taking from thence the chord of \(23 \frac{\pi}{\frac{\pi}{2}}\) degrees in your compaffes, fet it off both ways from \(H\), to \(g\) and to \(b\), in the periphery of the femi-difc; and draw the ftraight line \(g V b\), in which the North Pole of the Difc will be always found.

When the Sun is in Aries, Taurus, Gemini, Cancer, Leo, and Virgo, the North Pole of the Earch is enlightened by the Sun: but while the Sun is in the other fix Signs, the fouth Pole is enlightened, and the North Pole is in the dark.

And when the Sun is in Capricorn, Aquarius, Pifces, Aries, Taurus, and Gemini, the northern half of the Earth's Axis C XII \(P\) lies to the right hand of the Axis of the Ecliptic, as feen from the Sun; and to the left hand, while the Sun is in the other fix Signs,

PLATE XII. rig. I.

Open the fector till the radius (or diftance of the two 90's) of the Signs be equal to the length of \(V h\), and take the fine of the Sun's diftance from the Solftice (\(77^{\circ} 49^{\prime} 53^{\prime \prime}\)) as nearly as you can guefs, in your compaffes, from the line of fines, and fet off that diftance from \(V\) to \(P\) in the line \(g V h\), becaufe the Earth's Axis lies to the right hand of the Axis of the Ecliptic in this cafe, the Sun being in Aries; and draw the ftraight line \(C\) XII \(P\) for the Earth's Axis, of which \(P\) is the North Pole. If the Earth's Axis had lain to the left hand from the Axis of the Ecliptic, the diftance \(V P\) would have been fet off from \(V\) toward \(g\).

To draw the parallel of Latitude of any given place, as fuppofe London, or the path of that place on the Earth's enlightened Difc as feen from the Sun, from Sun-rife till Sun-fet, take the following method:
Subtract the Latitude of London, \(51^{\frac{1}{2}}{ }^{\circ}\) from \(90^{\circ}\), and the remainder \(3^{8 \frac{1}{2}^{\circ}}\) will be the co-latitude, which take in your compaffes from the line of chords, making \(C A\) or \(C B\) the radius, and fet it from \(b\) (where the Earth's Axis meets the Periphery of the Difc) to VI and VI, and draw the occult or dotted line VI K VI. Then, from the points where this line meets the Earth's Difc, fet off the chord of the Sun's declination \(4^{\circ} 49^{\prime}\) to \(D\) and \(F\), and to \(E\) and \(G\), and connect thefe points by the two occult lines FXII \(G\) and \(D L E\).

Bifect \(L\) K XII in \(K\), and through the point \(K\) draw the black line VI \(K\) VI. Then making \(C B\) the radius of a line of fines on the fector, take the co latitude of London \(38 \frac{1}{2} \circ\) from the fines in your compaffes, and fet it both ways from \(K\), to VI and VI. - Thefe hours will be juft in the edge of the difc at the Equinoxes, but at no other time in the whole year.

With the extent \(K\) VI, taken into your compaffes, fet one foot in \(K\) (in the black line below the uccult one) as a center, and with the other foot defrribe
defcribe the femicircle VI \(78910,8 \mathrm{c}\). and divide it into \(r 2\) equal parts. Then from thefe points of divifion, draw the occult lines \(7 p, 80,9 n\), \&xc. parallel to the Earth's Axis C XII \(P\).

With the fmall extent \(K\) XII as a radius, defcribe the quadrantal Arc XII \(f\), and divide it into fix equal parts, as XII \(a, a b, b c, c d, d c\), and ef; and through the divifion-points, \(a, b, c, d, e\), draw the occult lines VII eV, VIII \(d \mathrm{IV}, \mathrm{IX} \subset \mathrm{III}, \mathrm{X} b\) II, and XI \(a \mathrm{I}\), all parallel to VI \(K \mathrm{VI}\), and meering the former occult lines \(7 p, 80, \& c\). in the points VII VIII IX X X1, V IV III II and I: which points thall mark the feveral fituations of Londorz on the Earth's Difc, at thefe hours refpecrively as feen from the Sun; and the elliptic Curve VI VII VIll, \&cc. being drawn through thefe points, fhall reprefent the parallel of latitude, or path of London on the Difc, as feen from the Sun, from its rifing to its fetting.
N. B. If the Sun's declination had been fouth, the diurnal path of London would have been on the upper fide of the line VI KVI, and would have touched the line \(D L E\) in \(L\). -It is requifite to divide the horary fpaces into quarters, (as fome are in the figure, and, if poffible, into minutes alfo.

Make \(C B\) the radius of a line of chords on the fector, and taking therefrom the chord of \(5^{\circ} 35^{\prime}\), the angle of the Moon's vifible path with the Ecliptic, fet it off from \(H\) to \(M\) on the left hand of \(C H\), the Axis of the Ecliptic, becaufe the Moon's latitude is north afcending. Then draw CM for the Axis of the Moon's Orbit, and bifect the angle MCH by the right line Cz.-If the Moon's latitude had been north defcending, the Axis of her Orbit would have been on the right hand from the Axis of the Ecliptic.-N. B. The Axis of the Moon's Orbit lies the fame way when her latitude is fouth afcending, as when it is north afcending; and the fame way when fouth defcending, as when north defcending.

Take the Moon's latitude \(40^{\prime} 18^{\prime \prime}\) from the feaie \(C A\) in your compaffes, and fet it from \(i\) to \(x\) in the bifecting line \(C z\), making i \(x\) parallel to \(C y\) and through \(x\), at right-angles to the Axis of the Moon's Orbit \(C M\), draw the ftraight line \(N w x y s\) for the path of the Penumbra's center over the Earth's Difc. - The point \(w\), in the Axis of the Moon's Orbit, is that where the Penumbra's center approaches neareft to the center of the Earth's Difc, and confequently is the middle of the genera! Eclipfe: the point \(x\) is that where the conjunetion of the Sun and Moon falls, according to equal time by the Tables; and the point \(y\) is the ecliptical conjundtion of the Sun and Moon.

Take the Moon's true horary motion from the Sun, \(27^{\prime} 54^{\prime \prime}\), in your compaffes, from the feale \(C A\) (every divifion of which is a minute of a degree), and with that extent make marks along the path of the Penumbra's center; and divide each jpace from mark to mark, into fixty equal parts or horary minutes, by dots; and fet the hours to every 60 th minute in fuch a manner, that the dot fignifying the inftant of New Moon by the Tables, may fall into the point \(x\), half way between. the Axis of the Moon's Orbit, and the Axis of the Ecliptic; and then, the reft of the dots will thew the points of the Earth's Difc, where the Penumbra's center is at the inftants denoted by them, in its tranfit over the Earth.

Apply one fide of a fquare to the line of the Penumbra's path, and move the fquare backward and forward, until the other fide of it cuts the fame hour and minute (as at in and \(x\)) both in the path of London, and in the path of the Penumbra's center: and the particular minute or inftant which the fquare cuts at the fame time in both paths, fhall be the inftant of the vifible conjunction of the Sun and Moon, or greatert obfcuration of the Sun, at the place for which the confruction is made, namely London, in the prefent example; and this
inftant is at \(47 \frac{\pi}{2}\) minutes paf X o'clock in the morning; which is 17 minutes 5 feconds later than the tabular time of true conjunction.

Take the Sun's femidiameter, \(16^{\prime} 6^{\prime \prime}\), in your compaffes, from the fcale \(C A\), and fetting one foot in the path of London at \(m\), namely at \(47 \frac{\frac{1}{2}}{2}\) minutes patt X, with the other foot defcribe the circle \(U Y\), which fhall reprefent the Sun's Difc as feen from London at the greateft obfcuration. -Then take the Moon's femidiameter, \(14^{\prime} 57^{\prime \prime}\), in your compaffes from the fame fcale; and fetting one foot in the parh of the Penumbra's center at \(m, 4 \frac{5}{2}\) minutes after X , with the other foot defcribe the circle \(\mathcal{T} \Upsilon\) for the Moon's Difc, as feen from London, at the time when the Eclipfe is at the greateft; and the portion of the Sun's Difc which is hid or cut om. by the Moon's, will fhew the quantity of the Eclipfe at that time; which quantity may be meafured on a line equal to the Sun's diameter, and divided into twelve equal parts or digits.

Laftly, take the femidiameter of the Penumbra \(31^{\prime} 3^{\prime \prime}\), from the fcale \(C A\) in your compaffes; and letting one foot in the line of the Penumbra's central path, on the left hand from the Axis of the Ecliptic, direct the other foot toward the path of London; and carry that extent backward and forward till both the points of the compaffes fall into the fame inftant in both the paths: and that inftant will denote the time when the Eclipfe begins at London. - Then, do the like on the right hand of the Axis of the Ecliptic; and where the points of the compaffes fall into the fame inftant in both the paths, that inftant will be the time when the Ecliple ends at London.

Thefe trials give 20 minures after IX in the morning for the beginning of the Ecliple at London, at the points \(N\) and \(O\); \(47 \frac{1}{2} \frac{\text { minutes after } \mathrm{X} \text {, }}{}\) at the points \(m\) and \(n\), for the time of greateft obfcuration; and 18 minutes after XII, at \(R\) and \(S_{0}\)
for the time when the Eclipfe ends; according to mean or equal time.

From thefe times we muft fubtract the equation of natural days, viz. 3 minutes 48 feconds, in Leap year April 1, and we hall have the apparent times; namely IX hours 16 minutes 12 feconds for the beginning of the Eclipfe, X hours 43 minutes 42 feconds for the time of greatelt obfcuration, and XII hours 14 minutes 12 feconds for the time when the Eclipfe ends.- But the beft way is to apply this equation to the true equal time of \(\mathrm{N}_{\mathrm{t}} \mathrm{W}\) Moon, before the projection be begun; as is done in Example I. For the motion or pofition of places on the Earth's Difc anfwer to apparent or folar time.

In this conftruction it is fuppofed, that the angle under which the Moon's Dife is feen, during the whole time of the Eclipfe, continues invariably the fame; and that the Moon's motion is uniform and rectilinear during that time.-But thefe fuppofitions do not exaclly agree with the truch; and therefore, fuppofing the Elements given by the Tables to be accurate, yet the times and phafes of the Eclipfe, deduced from its conftruction, will not anfwer exactly to what pafferh in the Heavens; but may be at leaft two or three minutes wrong, though done with the greateft care.-Moreover, the paths of all places of confiderable latitudes are nearer the center of the Earth's Difc, as feen from the Sun, than thofe conftructions make them; becaufe the Difc is projected as if the Earth were a perfect fphere, although it is known to be a fpheroid. Confequently the Moon's fhadow will go farther northword in all places of northern latitude, and farther fouthward in all places of fouthern latitude, than it is thewn to do in thefe projections.-According to Mayer's Tables, this Eiclipfe will be about a quarter of an hour fooner than either thefe Tables,
or Mr. Flamfead's, or Dr. Halley's make it: and Mayer's Tables do not make it annular at London.

The projection of Lunar Eclipfes.
When the Moon is, within 12 degrees of either of her Nodes, at the time when fhe is Full, the will be eclipfed, otherwife not.

We find by Example II, page 32 I , that at the time of mean Full Moon in May \(1 ; 62\), the Sun's diffance from the afcending Node was only \(4^{\circ} 49^{\prime}\) \(35^{\prime \prime}\); and the Moon being then oppofite to the Sun, mutt have been juft as near her defcending Node, and was therefore eclipfed.

The elements for conftructing an Eclipfe of the Moon are eight in number, as follow:
r. The true time of Full Moon: and at that time, 2. The Moon's horizontal parallax. 3. The Sun's femidiameter. 4. The Moon's. 5. The femidiameter of the Earth's fhadow at the Moon. 6. The Moon's latitude. 7. The angle of the Moon's vifible path with the Ecliptic. 8. The Moon's true horary motion from the Sun. Therefore,
1. To find the true time of Full Moon. Work as already taught in the Precepts.-Thus we have the true time of Full Moon in May 1762 (fee Example II. page 321), on the 8 ch day, at 50 mi nutes 50 feconds paft III o'clock in the morning.
2. To find the Moon's horizontal Parallax. Enter Table XVII. with the Moon's mean Anomaly (at the above Full) \(9^{\prime} 2^{\circ} 42^{\prime} 42^{\prime \prime}\), and thereby take out her horizontal Parallax; which, by making the requifite proportion, will be found to be \(57 \mathrm{ic}^{\prime \prime}\).

3, 4. To find the Semidiameters of the Sun and Moon. Enter Table XVII. with their refpective A nomalies, the Sun's being \(10^{5} 7^{\circ} 27^{\prime} 45^{\prime \prime \prime}\) (by the above Example) and the Moon's \(9^{5} 2042^{\prime \prime} 42^{\prime \prime}\); and thereby take out their refpective femidiameters: the Sun's \(15^{\prime} 56^{\prime \prime}\), and the Moon's \(15^{\prime} 39^{\prime \prime}\).
\[
23
\]
5. To find the Jemidiameter of the Earth's 乃oadow at the Moon. Add the Sun's horizontal parallax, which is always \(10^{\prime \prime}\), to the Moon's, which in the prefent cafe is \(57^{\prime} 20^{\prime \prime}\), the fum will be \(57^{\prime} 30^{\prime \prime}\), from which fubtract the Sun's femidiameter \(15^{\prime} 56^{\prime \prime}\), and there will remain \(41^{\prime} 34^{\prime \prime}\) for the femidiameter of that part of the Earth's Chadow which the Moon then paffes through.
6. To find the Moon's Latitude. Find the Sun's true diftance from the afcending Node (as already taught in page 331) at the true time of Full Moon; and this diftance, increafed by fix figns, will be the Moon's true diftance from the fame Node; and confequently the argument for finding her true latitude, as fhewn in page 333.

Thus, in Example II. the Sun's mean diftance from the afcending Node was \(0^{\circ} 4^{\circ} 49^{\prime} 35^{\prime \prime}\), at the time of mean Full Moon : but it appears by the Example, that the true time thereof was 6 hours 33 minutes 38 feconds fooner than the mean time, and therefore we muft fubtract the Sun's motion from the Node (found in Table XII. page 312) during this interval, from the above mean diftance, \(0^{\prime} 4^{\circ} 49^{\prime} 35^{\prime \prime}\), in order to have his mean diftance from it at the true time of Full Moon.- Then to this apply the Equation of his mean diftance from the Node found in Table XV. by his mean Anomaly \(10^{\circ} 7^{\circ} 27^{\prime} 45^{\prime \prime}\); and laftly, add fix figns: fa Thall the Moon's true diftance from the afcending Node be found as follows:

Sun from Node at mean Full Moon
\(0 \quad 44935\)
His motion from it in \(\left\{\begin{array}{c}6 \text { hours } \\ 33 \text { minutes } \\ 38 \text { feconds }\end{array}\right.\)
Sum, fubtract from the uppermof line
Remains his mean diftance at true \(\}\)
- \(\} 0\)
.43232
Equation

Equation of his mean diftance, add
Sun's true diftance from the Node To which add

\section*{And the fum will be}
\(\begin{array}{llll}0 & 6 & 10 & 32 \\ 6 & 0 & 0 & 0\end{array}\)
--———
\(6 \quad 61032\)

Which is the Moon's true diftancefrom her afcending Node at the true time of her being Full; and confequently the argument for finding her true Latitude at that time. - Therefore, with this argument enter Table XVI. making proportion between the latitudes belonging to the 6th and 7th degree of the argument at the left hand (the figns being at the top) for the \(10^{\prime} 32^{\prime \prime}\), and it will give \(32^{\prime} 21^{\prime \prime}\) for the Aloon's true latitude, which appears by the Table to be fouth defcending.
7. To find the angle of the Moon's vifible path with she Ecliptic. This may be ftated at \(5^{\circ} 35^{\prime}\), without any error of confequence in the projeition of the Eclipfe.
8. To find the Moon's true borary motion from the Sun. With their refpective Anomalies take out their horary motions from Table XVII. is page 316; and the Sun's horary motion fubtracted from the Moon's, leaves remaining the Moon's true horary motion from the Sun: in the prefent cafe \(30^{\prime} 52^{\prime \prime}\).

Now collect thefe Elements together for ufe:

> D. H. M. S.
2. True Time of Full Moon \(\}\) in May \({ }^{7} 762\)
2. Moon's horizontal Parallax
- 5720
3. Sun's femidiameter
- 1556
4. Moon's femidiameter
- 1539
\(\left.\begin{array}{l}\text { 5. Semidiameter of the Earth's } \\ \text { fhadow at the Moon }\end{array}\right\}\)
6. Moon's true latitude, fouth defcending 032 2I 7. Angle of her vifible path with the
Ecliptic Ecliptic
8. Fier true horary motion from the Sun \(0305^{2}\)

PLATE XII.

Fig. II.

Thefe Elements being found for the conftruction of the Moon's Eclipfe in May \(\mathbf{1 7}\) 62, proceed as follows:

Make a fcale of any convenient length, as \(W X\), and divide it into 60 equal parts, each part ftanding for a minute of a degree.

Draw the right line \(A C B\) (Fig. 3.) for part of the Ecliptic, and \(C D\) perpendicular to it for the fouthern part of its Axis; the Moon having fouth latitude.

Add the femidiameters of the Moon and Earth's Shadow together, which, in this Eclipfe, will make \(57^{\prime} 13^{\prime \prime}\); and take this from the fale in your compaflies, and fetting one foot in the point \(C\), as a center, with the other foot defcribe the femicircle \(A D B\); in one point of which the Moon's center will be at the beginning of the Eclipfe, and in another at the end of it.

Take the femidiameter of the Earth's fhadow, \(41^{\prime} 34^{\prime \prime}\), in your compaffes from the fcale, and fetting one foot in the center \(C\), with the other foot defcribe the femicircle \(K L M\) for the fouthern half of the Earth's fhadow, becaule the Moon's latitude is fouth in this Eclipfe.

Make \(C D\) the radius of a line of chords on the fector, and fet off the angle of the Moon's vifible path with the Ecliptic, \(5^{\circ} 35^{\prime}\), from \(D\) to \(E\), and draw the right line CFE for the fouthern half of the Axis of the Moon's Orbit, lying to the right hand from the Axis of the Ecliptic C D, becaufe the Moon's latitude is fouth defcending. It would have been the fame way (on the other fide of the Ecliptic) if her latitude had been north defcending; but contrary in both cafes, if
her latitude had been either north afcending or fouth afcending.

Bifect the angle \(D C E\) by the right line \(C g\), in which line, the true equal time of oppofition of the Sun and Moon falls, as given by the Tables.

Take the Moon's latitude, \(32^{\prime} 21^{\prime \prime}\), from the fcale with your compaffes, and fet it from \(C\) to \(G\), in the line \(C G g\); and through the point \(G\), at right angles to \(C F E\), draw the right line \(P H G F N\) for the path of the Moon's center. Then, \(F\) fhall be the point in the Earth's fhadow, where the Moon's center is at the middle of the Eclipfe ; \(G\), the point where her center is at the tabular time of her being Full; and \(H\), the point where her center is at the inflant of her ecliptical oppofition.

Take the Moon's horary motion from the Sun, \(30^{\prime} 52^{\prime \prime}\), in your compaffes from the fcale; and with that extent make marks along the line of the Moon's path PGN: then divide each fpace from mark to mark, into 60 equal parts, or horary minutes, and fet the hours to the proper dots in fuch a manner, that the dot fignifying the inftant of Full Moon (viz. 50 minutes 50 feconds after III in the morning) may be in the point \(G\), where the line of the Moon's path cuts the line that bifects the angle DCE.

Take the Moon's femidiameter, \(15^{\prime} 39^{\prime \prime}\), in your compaffes from the fcale, and with that extent, as a radius, upon the points \(N, F\), and \(P\), as centers, defcribe the circle \(\mathcal{Q}\) for the Moon at the beginning of the Eclipfe, when fhe touches the Earth's hadow at V ; the circle \(R\) for the Moon at the middle of the Eclipfe; and the circle \(S\) for the Moon at the end of the Eclipfe, juft leaving the Earth's fhadow at \(W\).

The point \(N\) denotes the inftant when the Eclipfe begins, namely, at 15 minutes 10 feconds after II in the morning: the point \(F\) the middle of the Eclipfe at 47 minutes 45 feconds paft III; and the point \(P\) the end of the Eclipfe, at 18 minutes
after V.-At the greateft obfcuration the Moon is 10 digits eclipfed.

\section*{Concerning an antient Eclipfe of the Moon.}

It is recorded by Ptolemy, from Hipparcbus, that on the 22d of September, the year 20I before the firft year of Chrift, the Moon rofe fo much eclipfed at Alexandria, that the eclipfe muft have begun about half an hour before the rofe.

Mr. Carey puts down the Eclipfe in his Chrono. logy as follows, among feveral other antient ones, recorded by different authors.

That is, in the 45 I 3 th year of the fulian period, which was the 547 th year from Nabonaffer, and the 54 th year of the fecond Calipic period, on the 16th day of the month Mefori (which anfwers to the 22d of September) the Moon was 10 digits eclipfed at Alexandria, at 7 o'clock in the evening.

Now, as our Saviour was born (according to the Dionyfian or vulgaræra of his birth) in the 471 3th year of the fulian period, it is plain that the 45 I th year of that period was the 200th year before the year of Chrift's birth; and confequently 201 years before the year of Chrift I .

And, in the year 201, on the 22d of September, it appears by Example V. (page 324) that the Moon was full at 26 minutes 28 feconds paft VII in the evening, in the meridian of Alexandria.

At that time, the Sun's place was Virgo \(26^{\circ} 14^{\prime}\), according to our Tables; fo that the Sun was then within 4 degrees of the Autumnal Equinox: and according to calculation he muft have fet at Alexandria about 5 minutes after VI , and about one degree north of the weft.

The Moon being Full at that time, would have rifen juft at Sunfet, about one degree fouth of the eaft, if the had been in either of her Nodes, and her vifible place not depreffed by Parallax.

But her parallactic depreffion (as appears from her Anomaly, viz. \(10^{\circ} 6^{\circ}\) nearly) mult have been \(55^{\prime},^{\prime \prime \prime}\) "; which exceeded her whole diameter by \(24^{\prime}, 53^{\prime \prime}\); but then, the muft have been elevated \(33^{\prime \prime} 45^{\prime \prime}\) by refraction; which, fubtracted from her Parallax, leaves \(21^{\prime} 32^{\prime \prime}\) for her vifible or apparent depreffion.

And her true latitude was \(30 \frac{{ }^{\prime}}{2}\) north defcending, which being contrary to her apparent depreffion, and greater than the fame by \(8^{\prime} 5^{\prime \prime}\), her true time of rifing muft have been juft about VI o'clock.

Now, as the Moon rofe about one degree fouth of the eaft at Alexandria, where the vifible Hori\(z o n\) is land, and not fea, we can hardly imagine her to have been lefs than 15 or 20 minutes of time above the true Horizon before the was vifible.

It appears by Fig. 4, which is a delineation of this Eclipfe reduced to the time at Alemandria, that the Eclipfe began at 53 minutes after \(V\) in the evening; and confequently 7 minutes before the Moon was in the true Horizon: to which, if we add 20 minutes for the interval between her true rifing and her being vifible, we fhall have 27 mi nutes for the time that the Eclipfe was begun before the Moon was vifibly rifen.- The middle of this Eclipfe was at 30 minutes paft VII, when its quantity was almoft 10 digits, and its ending was at 6 minutes paft IX in the evening - So that our Tables come as near to the recorded time of this Eclipfe as can be expected, after an elapfe of 1960 years.

\section*{C H A P. XVIII.}

Of the fixed Stars.

Why the fixed Stars appear bigger when viewed by the bare cye, than when reenthrough a telefcope.
354. HE Stars are faid to be fixed, becaule they have been generally obferved to keep at the fame diftances from each ocher, their apparent diurnal revolution being caufed folely by the Earth's turning on its Axis. They appear of a fenfible magnitude to the bare eye, becaufe the retina is affected not only by the rays of light which are emitted directly from them, but by many thoufands more, which falling upon our eyelids, and upon the aërial particles about us, are reflected into our eyes fo ftrongly, as to excite vibrations not only in thofe points of the retina where the real images of the Stars are formed, but alfo in other points at fome diftance round about. This makes us imagine the Stars to be much bigger than they would appear, if we faw them only by the few rays which come directly from them, fo as to enter our eyes without being intermixed with others. Any one may be fenfible of this, by looking at a Star of the firft magnitude through a long narrow tube; which, though it takes in as much of the Sky as would hold a thoufand fuch Stars, it fcarce renders that one vifible.

The more a telefcope magnifies, the lefs is the aperture through which the Star is feen; and confequently the fewer rays it admits into the eye.

A proof that they fhine by their owa light. Now fince the Stars appear lefs in a telefcope which magnifies 200 times than they do to the bare eye, infomuch that they feem to be only indivifible points, it proves at once that the Stars are at immenfe diftances from us, and that they fhine by their own proper light. If they fhone by borrowed light, they would be as invifible without Lelefcopes as the Satellites of Jupiter are: for thefe Satellites

Satellites appear bigger when viewed with a good relefcope than the largeft fixed Stars do.
355. The number of Stars difcoverable, in either Hemifphere, by the naked eye, is not above a thoufand. This at firft may appear incredible, becaufe they feem to be without number: But the deception arifes from our looking confufedly upon them, without reducing them into any order. For look but ftedfaftly upon a pretty large portion of the Sky, and count the number of Sars in it, and you will be furprifed to find them fo few. And, if one confiders how feldom the Moon meets with any Stars in her way, although there are as many about her path as in other parts of the Heavens, he will foon be convinced that the Stars are much thinner fown than he was aware of. The Briti/b catalogue, which, befides the Stars vifible to the bare eye, includes a great number which cannot be feen without the affiltance of a telefcope, contains no more than 3000, in both Hemifpheres.
350. As we have incomparably more light from the Moon than from all the Stars together, it is the greateft abfurdity to imagine that the Stars were made for no other purpofe than to caft a faint light upon the Earth: efpecially fince many more require the affiftance of a good telefcope to find

The abfurdity of fuppofing the Stars were made only to thine upon us in the night. them out, than are vifible without that inftrument. Our Sun is furrounded by a fyftem of planets and Comets; all which would be invifible from the neareft fixed Star. And from what we already know of the immenfe diftance of the Stars, the neareft may be computed at \(32,000,000,000,000\) of miles from us, which is further than a cannonball would fly in \(7,000,000\) of years. Hence it is eafy to prove, that the Sun, feen from fuch a diftance, would appear no bigger than a Star of the firf magnitude. From all this it is highly probable that each Star is a Sun to a fyftem of worlds moving round it , though unfeen by us; efpecially as the doctrine of plurality of worlds is
rational,
rational, and greatly manifefts the Power, Wifdom, and Goodnefs of the Great Creator.

Their dif. ferent magbitudes:

And divifun into Cunflellasjubs.
357. The Stars, on accourt of their apparently various magnitudes, have been diftributed into feveral claffes or orders. Thofe which appear largeft, are called Stars of the firft magnitude; the next to them in luftre, Stars of the fecond magnitude; and fo on to the fixth, which are the fmalleft that are vifible to the bare eye. This diftribution having been made long before the invention of telefcopes, the Stars which cannot be feen without the affiftance of thefe inftruments, are diftinguifhed by the name of Telefcopic Stars.
358. The antients divided the ftarry Sphere into particular Conftellations, or Syftems of Stars, according as they lay near one another, fo as to occupy thofe fpaces which the figures of different furts of animals or things would take up, if they were there delineated. And thofe Stars which could not be brought into any particular Confelo lation, were called unformed Stars.

The ufe of this diviGon.
359. This divifion of the Stars into different Conftellations or Afterifms, ferves to diftinguifh them from one another, fo that any particular Star may be readily found in the Heavens by means of a Celeftial Globe; on which the Conftellations are fo delineated as to put the moft remarkable Stars into fuch parts of the figures as are moft eafily diftinguifhed. The number of the ancient Conftellations is 48 , and upon our prefent Globes about 70. On Senex's Globes, Bayer's Letters are inferted; the firft in the Greek Alphabet being put to the biggeft Star in each Conftellation, the fecond to the next, and fo on; by which means, every Star is as eafily found as if a name were given to it. Thus, if the Star \(\gamma\) in the Conftellation of the Ramb be mentioned, every Aftronomer knows as well what Star is meant, as if is were pointed out to him in the Heavens.
360. There is alfo a divifion of the Heavens The Zodiact into three parts. 1. The Zodiac (3 wodraxos) from弓'adon Zodion an Animal, becaufe moft of the Conftellations in it, which are twelve in number, are the figures of Animals: as Aries the Ram, Taurus the Bull, Geminit the Twins, Cancer the Crab, Leo the Lion, Virgo the Virgin, Libra the Balance, Scorpio the Scorpion, Sagittarius the Archer, Capricarmus the Goat, Aquarius the Water-bearer, and Pifees the Fifhes. The Zodiac goes quite round the Heavens: it is about 16 degrees broad, fo that it takes in the Orbits of all the Planets, and likewife the Orbit of the Moon. Along the middle of this Zone or Belt is the Ecliptic, or Circle which the Earth defcribes annually as feen from the Sun; and which the Sun appears to defcribe as feen from the Earth. 2. All that Region of the Heavens, which is on the north fide of the Zodiac, contains 21 Conftellations. And, 3d, That on the fouth fide, 15 .

36 I . The antients divided the Zodiac into the above 12 Conftellations or Signs in the following manner. They took a veffel with a fmall hole in

The manner of dwiding it by the ancients. the bottom, and having filled it with water, fuffered the fame to diftil drop by drop into another veffel fet beneath to receive it; beginning at the moment when fome Star rofe, and continuing until it rofe the next following night. The water fallen down into the receiver they divided into twelve equal parts: and having two other fmall veffels in readinefs, each of them fit to contain one part, they again poured all the water into the upper veffel, and oblerving the rifing of fome Star in the Zodice, they at the fame time fuffered the water to drop into one of the fimall veffels; and as foon as it was full they fhifted it, and fet an empty one in its place. When each veffel was full, they took notice what Star of the Zodiac rofe; and though this could not be done in one night, yet in many they
obferved the rifing of twelve Stars or points, by which they divided the Zodiac into twelve parts.
362. The names of the conftellations, and the number of Stars obferved in each of them by different Aftronomers, are as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{The ancient Confellations. \(P\)} & \multicolumn{4}{|l|}{Ptolimy. Tycbo. Hevel. Flamf.} \\
\hline Urfa minor & The Lirtle Bear & 8 & 7 & 12 & 24 \\
\hline Uria major & The Great Bear & 35 & 29 & 73 & 87 \\
\hline Draco & The Dragon & 31 & 32 & 40 & 80 \\
\hline Cepheus & Cepheus & 13 & 4 & 51 & 35 \\
\hline Boctes, Arcoopbilax & & 23 & 18 & 52 & 54 \\
\hline Corona Borealis & The Northern Crown & 8 & 8 & 8 & 21 \\
\hline Hercules, Engonajns & Hercules K necling & 29 & 28 & 45 & 113 \\
\hline Lyra & The Harp & 10 & 11 & 17 & 21 \\
\hline Cygnus, Gallina & The Swan & 19 & 18 & 47 & 81 \\
\hline Caffiopea & The Lady in her Chair & 13 & 26 & -37 & 55 \\
\hline Perfeus & Perfeus & 29 & 29 & 46 & 59 \\
\hline Auriga & The Waggoner & 14 & 9 & 40 & '66 \\
\hline Serpentarius, Opbiuchus & Serpentarius & 29 & 15 & 40 & 74 \\
\hline Sorpens & The Serpent & 18 & 13 & 22 & 64 \\
\hline Sagitta & The Arrow & 5 & 5 & 5 & 18 \\
\hline Aquila, Vultur & The Eagle \(\}\) & & 12 & 23 & \\
\hline Antinous & Antinous \(\}\) & 15 & 3 & 19 & 71 \\
\hline Delphinus & The Dolphin & 10 & 10 & 14 & 18 \\
\hline Equalus, Equi fecio & The Horfe's Head & 4 & 4 & 6 & 10 \\
\hline Pegafus, Equus & The Flying Horfe & 20 & 19 & 38 & 89 \\
\hline Andromeda & Andromeda & 23 & 23 & 47 & 66 \\
\hline Triangulum & The Triangle & 4 & 4 & 12 & 16 \\
\hline Aries & 'The Ram & 18 & 21 & 27 & 66 \\
\hline 'raurus & The Bull & 44 & 43 & 51 & 141 \\
\hline Gemini & The Twins & 25 & 25 & 38 & 85 \\
\hline Cancer & The Crab & 23 & 15 & 29 & 83 \\
\hline Leo & The Lion \(\}\) & & 30 & 49 & 95 \\
\hline Coma Berenices & Berenice's Hair \(\}\) & 35 & 14 & 21 & 43 \\
\hline Virgo & The Virgin & 32 & 33 & 50 & 110 \\
\hline Libra Cbela & The Scales & 17 & 10 & 20 & 51 \\
\hline Scorpius & The Scorpion & 24 & 10 & 20 & 44 \\
\hline Sagittarius & The Archer & 31 & 14 & 22 & 69 \\
\hline Capricornus & The Goat & 28 & 28 & 29 & 51 \\
\hline Aquarius & The Water-bearer & 45 & 41 & 47 & 108 \\
\hline Pifces & The Fifhes & 38 & 36 & 39 & 113 \\
\hline Cerus & The Whale & 22 & 21 & 45 & 97 \\
\hline Orion & Orion & 38 & 42 & 62 & 78 \\
\hline Eridanus, Fluvius & Eridanus, the River & 34 & 10 & 27 & 84 \\
\hline Lepus & The Hare & 12 & 13 & 16 & 19 \\
\hline Canis major & The Great Dog & 29 & 13 & 21. & 31 \\
\hline Canis minor & The Little Dog & 2 & 2 & 13 & The \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{The ancient Conftlations.} & \multicolumn{4}{|l|}{Pooleny. Tycbo. Hercl. Flamfo} \\
\hline Argo & The Ship & 45 & 3 & 4 & 6. \\
\hline Hydra & The Hydra & 27 & 19 & 31 & 60 \\
\hline Crater & The Cup & 7 & 3 & 10 & 35 \\
\hline Corvus & The Crew & 7 & 4 & & 9 \\
\hline Centaurus & The Centaur & 37 & & & 35 \\
\hline Lupus & The Wolf & 19 & & & 24 \\
\hline Ara & 'The Alcar & 7 & & & 9 \\
\hline Corona Auftalis & The Southern Crown & 13 & & & 12 \\
\hline Pifcis Auftralis & The Southern Fiifh & 18 & & & 24 \\
\hline
\end{tabular}

\section*{The New Southern Conftellations.}
\begin{tabular}{|c|c|c|}
\hline Columba Nzochi & Noah's Dove & 10 \\
\hline Robar Carulinum & The Royal Oak & 12 \\
\hline Grus & The Crane & 13 \\
\hline Phernix & The Phenix & 13 \\
\hline Indus & The Indian & 12 \\
\hline Pavo & The Pcazock & 14 \\
\hline Apus, Avis Indica & The Bird of Paradife & 11 \\
\hline Apis, Mufia & The Bre or Fly & 4 \\
\hline Chanzleon & The Chameleon & 10 \\
\hline Triangulum Auftralis & The South Triangle & 5 \\
\hline Pifcis volanc, Pafer & The Flying Fin & 0 \\
\hline Dorado, Xiphias & The Sword Fin & 6 \\
\hline Toucan & The American Goofe & 9 \\
\hline Hydrus & The Water Snake & \\
\hline
\end{tabular}

Hevelius's Conftellations made out of the unformed Stars.
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{croclius. Elatyp,} \\
\hline Lynx & The Lynx & 19 & + \\
\hline Leo minor & The Little Lion & & 53 \\
\hline Alteron and Chara & The Greyhounds & 23 & 25 \\
\hline Cerberus & Cerberus & 4 & \\
\hline Valpecula and Anfer & The Fox and Goofe & 27 & 35 \\
\hline Scutum Sobielki & Sobiefki's Shield & 7 & \\
\hline Lacerta & The Lizard & & 16 \\
\hline Camelopardalus & The Camelop_rd & 32 & 58 \\
\hline Monoceros & The Unicorn & 19 & 35 \\
\hline Sextans & The Sextant & 18 & 45 \\
\hline
\end{tabular}
363. There is a remarkable track round the The oriky Heavens, cailed the Milky Way, from its peculiar Wag. whitenefs, which is found, by means of the telefcope, to be owing to a vaft number of very finall Stars that are fituated in that part of the hea-
A.
vens. This track appears fingle in fome parts, in others double.
Lucid Spots.
364. There are feveral little whitifh fpots in the Heavens, which appear magnified, and more luminous, when feen through telefcopes; yet without any Stars in them. One of thefe is in Andromeda's girdle, and was firt obferved A.D. 1612, by Simon Marius: it has fome whitifh rays near its middle, is liable to feveral changes, and is fometimes invifible. Another is near the Ecliptic, between the head and bow of Sagittarius: it is fmall, but very Juminous. A third is on the back of the Centaur, which is too far fouth to be feen in Britain. A fourth, of a fmaller fize, is before Antinous's right foot, having a ftar in it, which makes it appear more bright. A fifth is in the Conftellation of Hercules, between the Stars \(\zeta\) and \(r\), which fpot, though but fimall, is vifible to the bare eye, if the Sky be clear, and the Moon abfent.

Cloudy
Stais.
365. Cloudy Stars are fo called from their mifty appearance. They look like dim Stars to the naked eye; but through a telefcope they appear broad illuminated parts of the Sky; in fome of which is one Star, in ochers more. Five of thefe are mentioned by Ptolemy. I. One at the extremity of the right hand of Perfeus. 2. One in the middle of the Crab. 3. One unformed, near the Sting of the Scorpion. 4. The eye of Sagittarius. 5. One in the head of Orion. In the firtt of thefe appear more Stars through the telefcope than in any of the reft, although 21 have been counted in the head of Orion, and above 40 in chat of the Crab. Two are vifible in the eye of Sagittarius without a telefcope, and feveral more with it. Flamfead obferved a cloudy Star in the bow of Sagittarius, containing many fmall Stars: and the Stard above Sagittarius's right fhoulder is encompaffed with feveral more. Both Cafini and FlamAead difcovered one between the Great and Little Dog, which is very full of Stars vifible only by the telefcope.
telefcope. The two whitifh Spors near the South Pole, called the Magellanic Clouds by Sailors, which to the bare eye refemble part of the Milky Way, appear through telefcopes to be a mixture of fmall Clouds and Stars. But the moft remarkable of all the cloudy Stars is that in the middle of Orion's Sword, where feven Stars (of which three are very clofe together) feem to fhine through a cloud, very lucid near the middle, but faint and ill defined about the edges. It looks like a gap in the fky , through which one may fee (as it were) part of a much brighter region. Although moft of thefe fpaces are but a few minutes of a degree in breadth, yet, fince they are among the fixed. Stars, they muft be fpaces larger than what is occupied by our Solar Syftem; and in which there feems to be a perpetual uninterrupted day among numberlefs Worlds, which no human art ever can difcover.
365. Several Stars are mentioned by ancient Aftronomers, which are not now to be found; and others are now vifible to the bare eye which are not recorded in the ancient catalogue. Hipparchus obferved a new Star about 120 years before Christ; but he has not mentioned in what part of the Heavens it was feen, although it occafioned hismaking a Catalogue of the Stars; which is the moft ancient that we have.

The firft New Star that we have any good ac- New Start. count of, was difcovered by Cornelius Gemma on the 8th of November, A. D. I572, in the Chair of Cafioper. It furpaffed Sirius in brightnefs and magnitude; and was feen for 16 months fucceffively. At firft it appeared bigger than fupiter io fome eyes, by which it was feen at mid-day; afterwards it decayed gradually both in magnitude and luftre, until March 1573 , when it became invifible.
On the 13th of Auguf I 596, David Fabricius obferved the Stella Mira, or wonderful Star, in the Neck of the Whalc; which has been fince found to appear and difappear periodically feven timets in
fix years, continuing in the greatef luftre for 15 days together; and is never quite extinguifhed.
In the year 1600, William Ganfenius difcovered a changeable Star in the Neck of the Swons; which, in time, became fo finall as to be thought to difappear' entirely, till the years 1657,1653 , and 1659, when it recovered its former lullre and magnitude; but foon decayed, and is now of the finatleft fize.

In the year 1604, Kepler and feveral of his friends faw a new Star near the heel of the right foot of Serpentarius, fo bright and fparkling, that it exceeded any thing they had ever feen before; and took notice that it was everymoment changing inen fome of the colours of the rainbuw, except when it was near the Horizon, at which time it was generally whice. It furpaffed fupiter in magnitude, which was near it all the month of Ogiber, but eafily diftinguinhed from gupiter by the ready light of that Planet. It difappeared between Oitcber 1605, and the February following, and has not been feen fince that time.

In the year 1670, July 15, Hevelius difcovered a new Star, which in Oitober was fo decayed as to be fcarce perceptible. In April following it regained irs luftre, but wholly difappeared in Auruff. In March 1672, it was feen again, but very fmall; and has not been vifible fince.

In the year 1686 , a new Star was difcovered by Kirch, which returns periodically in \(40+\) days.

In the year r672, Cafini faw a Star in the Neck of the \(B u!l\), which he thought was not vifible in Tycho's time; nor when Bayer made his Figures.

Cannot be Comets.
367. Many Stars, befide thofe above mentioned, have been obferved to change their magnitudes; and as none of them could ever be perceived to have tails, is is plain they could not be Comets; efpecially as they had no Parallax, even when larget and brighten. It would feem that the periodical Stars have valt clufters of dark fpots, and very
now rotations on their Axes; by which means, they muft difappear when the ficle covered with fpots is turned toward us. And as for thofe which break out all of a fudden with fuch luftre, it is by no means improbable that they are Suns whofe fuet is almof fpent, and again fupplied by fome of their Comets falling upon them, and occafioning an uncominon blaze and fplenduur for fome time: which indeed appears to be the greateft ufe of the cometary part of any fytem *.

Some of the Stars, particularly Arcturus, have been obferved to change their places above a mi-

Some Stars change their places. nute of a degree with refpect to others. But whether this be owing to any real motion in the Stars themfelves, mult require the obfervations of many ages to determine. If our Solar Syftem changes its place, with regard to abfolute fpace, this mult in procefs of time occafion an apparent change in the diffances of the Stars from each orher: and in Such a cafe, the places of the neareft Stars to us being more affected than thofe which are very remore, their relative pofitions muft feem to alter, though the Stars themfelves were really immoveable. On the other hand, if our own Syftem be at reft, and any of the Stars in real motion, this mult vary their pofitions; and the more \(\{0\), the nearer

\footnotetext{
* M. Mansertuis, in his differtation on the figures of the Celeftral Bodies (\(p \cdot\left(1-\sigma_{3}\right.\)), is of opinion that fome Stars, by their proziginus quick rotations on their Axes, may not only aflume the ligures of oblate fpheroids, but that, by the greas centifugal force, arifing from fuch rotations, they may become of the figures of mill-ftones; or be reduced to fat circular planes, fo thin as to be quite invifible when theiredges are curned toward us; as Saturn's Ring is in fuch pofitions. But when any eccentric Planets or Comets go round any flat Star, in Orbits muck isclined to its Equator, the attration of the Planets or Comets in their Perihelions muft alter the inclination of the Axis of that Star; on which account it will appear more or lefs large and luminous, as is broad fide is more or lefs turned toward us. And thus he imagines we may accounc for the apparent changes of magnitude and luftre in thofe Star:, and likewife for their appearing and difappearing.
}
they are to us, or fwifter their motions are; or the more proper the direction of their motion is for our perception.

The Ecliptic lefs ob. lique now to the Equator than formerly.
368. The obliquity of the Ecliptic to the Equinoctial is found at prefent to be above the third part of a degree lefs than Ptolemy found it. And moft of the obfervers after him found it to decreafe gradually down to Tycho's time. If it be objected, that we cannot depend on the obfervations of the ancients, becaufe of the incorrectnefs of their inftruments; we have to anfwer, that both Tycho and Flamfead are allowed to have been very good obfervers; and yet we find that Flamftead makes this obliquicy \(2 \frac{1}{2}\) minutes of a degree lefs than \(\tau y\) cho did, about 100 years before him: and as Ptolemy was 1324 years before Tycko, fo the gradual decreafe anfwers nearly to the difference of time between thefe three Aftronomers. If we confider, that the Earth is not a perfect fphere, but an oblate fpheroid, having its Axis fhorcer than its equatorial diameter; and that the Sun and Moon are conftantly acting obliquely upon the greater quantity of matter about the Equator, pulling it, as it were, toward a nearer and nearer co-incidence with the Ecliptic; it will not appear improbable that thefe actions fhould gradually diminifi the Angle between thofe Planes. Nor is it lefs probable that the mutual attraction of all the Planets fhould have a tendency to bring their Orbits to a co-incidence: but this change is too finall to become fenfible in many ages.

\section*{C H A P. XXI.}

Of the Divifion of Time. A perpetual Table of New Moons. The Times of the Birth and Denth of
Christ. ATable of remarkable Eras or Events.
369. WHE parts of Time are Seconds, Minutes, Hours, Days, Years, Cycles, Ages, and Periods.
370. The original ftandard, or integral meafure A Yar. of time, is a Year; which is determined by the Revolution of fome Celeftial Body in its Orbit, viz. the Sun or Moon.
37. The Time meafured by the Sun's Revolution in the Ecliptic, from any Equinox or Solftice to the fame again, is called the Solar or Tropicai Year, which contains 365 days, 5 hours, 48 minutes, 57 feconds; and is the only proper or natural year, becaufe it always keeps che tame feafons to the fame months.
372. The quantity of time meafured by the splereal Sun's Revolution as from any fixed Star to the fame Star again, is called the Sydereal Year; which contains 365 days, 6 hours, 9 minutes, \(14 \frac{1}{2} \mathrm{fc}\) conds; and is 20 minutes, \(17 \frac{1}{2}\) feconds longer than the true Solar Year.
373. The time meafured by twelve Revolutions Lunar Year. of the Moon, from the Sun to the Sun again, is called the Lunar Year; it contains 354 days, 8 hours, 48 minutes, 36 feconds; and is therefore 10 days, 21 hours, 0 minutes, 21 feconds fhorter than the Solar Year. This is the foundation of the Epact.
374. The Civil Year is that which is in common Civil Yearo ufe among the different nations of the world; of which, fome reckon by the Lunar, but molt by the Solar. The Civil Solar Year contains 365 days, for three years running, which are called Cominon Sears; and then comes in what is called the Bifex-
tile or Leap-year, which contains 366 days. This is alio called the fulion ?car, on account of Yuizus Cofar, who appointed the intercalary day every fourth year, thinking thereby to make the Civil and Solar Year keep pace together. And this day, being added to the 23d of Februery, which in the Roman Calendar was the fixth of the Calends of March, that fixth day was twice reckoned, or the 23 d and 24 th were reckoned as one day; and was called Bis fextus dies, and thence came the name Bifextile for that year. But in our common Almanacks this day is added at the end of Fiblruary.
375. The Civil Lunar Year is alfo common or intercalary. The common Year confifts of 12 Lunations, which contain 354 days; at the end of which, the year begins again. The Jitercalary, or Embolimic Year, is that wherein a month was added to adjuft the Lunar Year to the Solar. This method was ufed by the fewes, who kept their accoune by the Lunar Motions. But by intercalating no more than a month of 30 days, which they called \(V \epsilon-A d a r\), every third year they fell \(3^{\frac{3}{7}}\) days mort of the Solar Year in that time.
376. The Romans alfo ufed the Lunar Embolimic Year at firt, as it was fettled by Romz2dus theiv firt King, who made it to confift only of ten months or Lunations; which fell 6 I days fhort of the Solar Year, and fo their year became quite vague and unfixed; for which reafon they were forced to have a Table publifhed by the HighPrieft, to inform them when the fpring and other feafons began. But yutius Cafor, as already mentioned, § 374, taking this troublefome affair into confideration, reformed the Calendar, by making the year to confint of 365 days, 6 hours.

The origi. n.l of the Gregoian or New Stile.
377. The year thus fettled, is what was ured in Britain till \(A\).D. 1752: but as it is fomewhat more than I minutes longer than the Solar Tropical Year, the times of the Equinoxes go backward, and fall earlier by one day in about 130 years. In the time
of the Nicene Council (A.D.325), which was 1439 years ago, the Vernal Equinox fell on the 2ift of March: and if we divide 1444 by 130 , it will quote II, which is the number of days the Equinox has fallen back fince the Council of Nice. This caufing great difurbances, by unfixing the times of the celebtation of Eafler, and coniequently of all the other moveable Feafts, Pope Gregory the XIII. in the year \(15^{82}\), ordered ten days to be at once fruck out of that year; and the next day after the fourth of Oftober was called the fifteenth. By this means the Vernal Equinox was reftored to the 21 ft of March; and it was endeavoured, by the omifion of chree intercalary days in 400 years, to make the Civil or Political year keep pace with the Solar for the time to come. This new form of the year is called the Gregorian Aicount, or New Stile; which is received in all countries where the Pope's authority is acknowledged, and ought to be in all places where truth is regarded.
378. The principal divifion of the year is into Months. Months, which are of two forts, namely, Aftronomical and Civil. The Aftronomical month is the time in which the Moon runs through the Zodiac, and is either Periodical or Synodical. The Periodical Month is the time fpent by the Moon in making one complete Revolution from any point of the Zodiac to the fame again; winich is \(27^{\mathrm{d}} 7^{\mathrm{h}}\) \(43^{\text {m. }}\). The Synodical Montin, called a Lunation, is the time contained between the Moon's parting with the Sun at a Conjunction, and returning to him again; which is \(29^{\mathrm{d}} 12^{\mathrm{h}} 44^{\mathrm{m}}\). The Civil Months are thofe which are framed for the ufes of civil life; and are different as to their names, number of days, and times of beginning, in feveral different Countries. The firft month of the Fiveifh Year fell, according to the Moon, in our Auguft and September, Old Stile; the lecond in Sepicmber and Oefober; and io on. The firft montly of the Egyptien Year began on the 29th of
our Auguft. The firt month of the Arabic and Turkib Year began the 16 th of Fuly. The firft month of the Grecian Year fell, according to the Moon, in fune and \(\mathcal{F u l y}\), the fecond in fuly and Auguft, and fo on, as in the following Table.
379. A month is divided into four parts called Weeks, and a week into feven parts called Days; fo that in a fulian year there are is fuch Months, or 52 Weeks, and one Day over. The Gentiles gave the names of the Sun, Moon, and Planets, to the Days of the Week. To the firft, the Name of the Sun; to the fecond, of the Moon; to the third, of Mars; to the fourth, of Mercury; to the fifth, of Fupiter; to the fixth, of Venus; and to the feventh, of Saturu.

In the Embolimic year after Adar they added a month called \(V e\)-Adar of 30 days.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline N0 & & \multicolumn{5}{|l|}{I he Egyptian year.} & & ays \\
\hline \multirow[t]{12}{*}{} & Thoth & - & & & & 29 & & 30 \\
\hline & Pauphi - & - & - & Septe & mber & & & 30 \\
\hline & \({ }_{3}\) Athir & - & - & Octob & & 28 & & 30 \\
\hline & Chojac - & - & - & Nove & nber & & & 30 \\
\hline & Tybi & - - & - & Dece & ber & & & 30 \\
\hline & Mechir - & - & - & Janu & & 26 & & 30 \\
\hline & Phamenoth & h & - & Febr & ary & 25 & & 30 \\
\hline & Parmuthi & - & -. & Mar & & 27 & & 30 \\
\hline & Pachon - & - - & - & Apri & & 26 & & 30 \\
\hline & Payni & - & - & & & 26 & & 30 \\
\hline & Epiphi & - - & - & June & & 25 & & 30 \\
\hline & Mefori & - & - & July & & 2.5 & & 30 \\
\hline \multicolumn{5}{|r|}{Epagomence or days added} & & & & 5 \\
\hline \multicolumn{4}{|c|}{Days in the year} & - & & & & 65 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline N & \multicolumn{2}{|l|}{The ancient Grecian year.} & \\
\hline & & & \\
\hline & etagitnion & Suly-Aug. & \\
\hline & Boëdromion - & Aug.-Sept. & \\
\hline & Pyanepfion & Sepli-Oct. & \\
\hline & Maimaterion & Oct.-Nov. & \\
\hline & Pofideon & Nov.-Dec. & 29 \\
\hline & Gamelion & ec.-Ian. & \\
\hline & Anchefterion & Jan, - Feb. & \\
\hline & Elaphebolion - & Feb.-Mar & \\
\hline & Municheon & Mar.-Apr. & , \\
\hline & Thargelion & Apr.-May & 30 \\
\hline & Schirrophorion & May-June & \\
\hline & Days in the year & - - & \\
\hline
\end{tabular} Natural Day contains 24 hours; the Artificial, the time from Sun-rife to Sun-fet. The Natural Day is either Aftronomical or Civil. The Aftronomical Day begins at Noon, becaufe the increafe and decreafe of Days terminated by the Horizon are very unequal among themfelves; which inequality is likewife augmented by the inconftancy of the horizontal Refractions \$ 183 ; and therefore the Afronomer takes the \(\sqrt{\text { k }}\) eridian for the limit of diurnal Revolutions; reckoning Noon, that is, the inftant when the Sun's center is on the Meridian, for the heginning of the Day. The Britifh, French, Dutch, Germens, 从paniards, Poriuguefe, and Egyptians, begin the Civil Day at Midnight: the ancient Greeks, Feaus, Bobemsions, Sitefunt, with the modern Inalians, and Chinefe, begin it at Sun-ietting: and the ancient Babylonians, Perfzans, Syrians, with the modern Grecks, at Sun-rifing.
HoEss.
\(3^{881}\). An Hour is a certain determinate part of the \(D a y\), and is either equal or unequal. Fs n equal Hour is the 24th part of a mean natural Day, as
fhewn by well-regulated Clocks and watches; but thele hours are nor quete equal as meafured by the returns of the Sun to the Meridian, becaufe of the obliquity of the Ecliptic and Sun's unequal motion in it, \(\$ 224-245\). Unequal Hours are thofe by which the Artificial Day is divided into twelve Parts, and the Night into as many. 382. An Hour is divided into 60 equal parts called Minilles, a Minute into 60 equal parts called Seconds, and thefe again into 60 equal parts called Thirds. The yews, Cbaldeans, and Arabians, divide the Hour into 1030 equal parts called Scruples; which number contains 18 times 60 , fo that one minute contains is Scruples.
\(3^{8} 3\). A Cycie is a perperual round, or circulation of the lame parts of time of any forc. The Cycie of the Sun is a revolution of 28 years, in which time the days of the months return again to the fame days of the week; the Sun's Place to the fame Signs and Degrees of the Ecliptic on the fame months and days, fo as not to differ one degree in ico years; and the Leap.years begin the fame courfe over again with refpect to the days of the week on which the days of the months fall. The Cycle of the Moon, commonly called the Golden Number, is a revolution of 19 years; in which time, the Conjunctions, Oppofitions, and other Afpects of the Moon, are within an hour and half of being the fame as they were on the fame days of the months 19 years before. The Indicsion is a revolucion of 15 years, ufed only by the Romans for indicating the times of certain payments made by the fubjects to the Republic: is was ettablifhed by Conftantine, A. D. 312.
384. The year of our Saviour's Birth, according to the vulgar 隹ra, was the gth year of the Sular Cycle; the firlt year of the Lunar Cycle; Toind the Years of thefeCycles. and the 312 th year after his birth was the firlt year of the Roman Indiation. Therefore, to find the year of the Solar Cycle, add 9 to any given year
of Christ, and divide the fum by 28, the Quotient is the number of Cycles elapfed fince his birth, and the remainder is the Cycle for the given year: if nothing remain, the Cycle is 28 . To find the Lunar Cycle, add 1 to the given year of Christ, and divide the fum by 19 ; the Quotient is the number of Cycles elapfed in the interval, and the remainder is the Cycle for the given year: if nothing remain, the Cycle is 19. Laftly, fubtract 312 from the given year of Christ, and divide the remainder by 15 ; and what remains after this divifion is the Indiction for the given year: if nothing remain, the indiction is 15 .

The deficiency of the Limar Cycle, and confequesce thereof.
385. Although the above deficiency in the Lunar Cycle of an hour and half every 19 years be but fmall, yet in time it becomes fo fenfible as to make a whole natural Day in 310 years. So that, although this Cycle be of ufe, when the Golden Numbers are rightly placed againft the days of the months in the Calendar, as in our Commsn Prayer Books, for finding the days of the mean Conjunctions or Oppofitions of the Sun and Moon, and confequently the time of Eafer; it will only ferve for 310 years, Old Stile. For as the New and Full Moons anticipate a day in that time, the Golden Numbers ought to be placed one day earlier in the Calendar for the next 310 years to come. Thefe Numbers were rightly placed againt the days of New Moon in the Calendar, by the Council of Nice, A. D. 325; but the anticipation which has been neglected ever fince, is now grown almoft into 5 days; and therelore all the Goluten Numbers ought now to be placed 5 days higher in the Calendar for the Old Stile than they were at the time of the faid Council; or fix days lower for the Nero Stile, becaufe at prefent it differs 11 days from the Old.

How to find the day of the New Mnon by the Golden Number.
386. In che annexed Table, the Golden Numbers under the months fland againft the days of New Moon in the leff-hand column, for the New

Stiic; adapted chiefly to the fecond year after Leap-year: as being the neareft mean for all the four; and will ferve ill the year 1900. Therefore, to find the day of New Moon in any montlz of a given year till that time, look for the Golden Number of that year under the defired month, and againft it, you have the day of Nevs Moon in the left-hand column. Thus, fuppofe it were required to find the day of New Moon in September, 1757; the Golden Number for that year is 10, which I look fur under September, and right againft it in the left-hand column ! find 13 , which is the day of New Moon in that month. \(N\). B. If all the Golden Numbers, except 17 and 6 , were fet one day lower in the Table, it would ferve from the beginning of the year 19 so till the end of the year 2199. The firt Table after this Chapter hhews the Golden Number for 4000 years after the birth of Christ; by looking for che even hundreds of any given year at the left hand, and for the reft to make up that year at the head of the Table; and where the columns meet, you have the Golden Number (which is the fame boch in Uld and New Stile) for the given year. Thus, fuppore the Golden Number was wanted for the year 1757; I look for 1700 at the left hand of the Table, and for 57 at the top of it; then guiding my eye downward from 57 to over againft 1700, I find 10, which is the Golden Number for that year.

A perpelual Table of the time of New Moon to the nearefthor for the OL.l Sule.
387. But becaufe the Lunar Cycle of 19 years fometimes includes five Leap-years, and at other times only four, this Table will Cometimes vary a day from the truth in Leap-years after Febrnary. And it is impnffible to have one more correct, unlefs we extend it to four times ig or 76 years; in which there are 19 Leap-years without a remainder. But even then to have it of perpetual ufe, it mult be adapted to the Old Stile; becaufe in every centurial year not divifible by 4 , the regular courle of Leap-years is interrupted in the New; as will
be the cafe in the year 1800. Therefore, upon the regular Old Stile plan, I have computed the following Table of the mean times of all the New Moons to the neareft hour for 76 years; beginning with the year of Christ \({ }^{1} 724\), and ending with the year 1800 .

This Table may be made perpetual, by deducting 6 hours from the time of New Moon in any given year and month from 1724 to 1800, in order to have the mean time of New Moon in any year and month 76 years afterward; or deducting 12 hours for 152 years, 18 hours for 228 years, and 24 hours for 304 years: becaufe in that time the changes of the I Ioon anticipate almoft a complete natural day. And if the like number of hours be added for fo many years paft, we fhall have the mean time of any New Moon already elapfed. Suppofe, for example, the mean time of Change was required for Fanuary 1802; deduct 76 years, and there remains 1726, againft which, in the following Table, under Fanuary, I find the time of New Moon was on the 21 ft day, at 11 in the evening: from which take 6 hours, and there remains the 2 Ift day, at 5 in the evening, for the mean time of Change in 7 anuary 1802 . Ur, if the time be required for Muy, A. D. 1701, add 76 years, and it makes 1777, which I look for in the Table, and againtt it, under May, I find the New Moon in that year falls on the 25 th day, at 9 in the evening; to which add 6 hours and it gives the 26 th day, at 3 in the morning, for the time of New Noon in May, A. D. 1701. By this addition for time paft, or fubtraction for time ro come, the Table will not vary 24 hours from the truth in lefs than 14592 years. And if, inftead of 6 hours for every 76 years, we add or fubtract only 5 hours 52 minutes, it will not vary a day in :o millions of years.

Aluhough this Table is calculated for 76 years only, and according to the Old Stile, yet by means of two eafy Equations it may be made to anfwer as exactly to the Nerw Stile, for any time to come. Thus, becaufe the year 1724 in this Table is the firft year of the Cycle for which it is made; if from any year of Christ after 1800 you fubtract 1723 , and divide the overplus by 76 , the quotient will fhew how many entire Cycles of 76 years are elapfed fince the beginning of the Cycles here provided for; and the remainder will fhew the year of the current Cycle anfwering to the given year of Christ. Hence if the remainder be o, you muft inftead thereof put 76, and leffen the quotient by unity.

Then, look in the left-hand column of the Table for the number in your remainder, and againft it you will find the times of all the mean New Moons in that year of the prefent Cycle. And whereas in 76 fulian years the Moon anticipates 5 hours 52 minutes, if therefore thefe 5 hours 52 minutes be multiplied by the above found Quotient, that is, by the number of entire Cycles pant; the product fubtracted from the times in the Table will leave the corrected cimes of the New Moons to the Old Stile; which may be reduced to the New Stile thus:

Divide the number of encire hundreds in the given year of Christ by 4, multiply this quotient by 3 , to the product add the remainder, and from their fum fubtract 2 : this laft remainder denotes the number of days to be added to the times above corrected, in order to reduce them to the New Stilc. The reafon of this is, that cuery 400 years of the Nere Stile gains 3 days upon the Old Stile: one of which it gains in each of the centurial years fucceeding that which is exaclly divifible by 4 without a remainder; bui then, when you have found the days fo gained, 2 muft be fubtracted from their number on account of the sectifications made in the Calendar by the Council of Nice, and fince by

Pope Gregory. It mutt alfo be obferved, that the additional days found as above directed, do not rake place in the centurial Years which are not multiples of 4 till February 29 th, Old Stile, for on that oay begins the difierence between the Stiles; till which day, therefore, thofe that were added in the preceding years muft be ufed. The following Example will make this accommodation plain.

Required the mean time of New Moon in June, A.D. 1909, N. S.

From 1909 take 17.23 years, and there remains 186
Which, divided by 76, gives the quotient 2 and the remainder 34
Then, againft 34 in the Table is fune - - \(5^{d} 8^{\mathrm{h}} 0^{\mathrm{m}}\) Afternoon And \(5^{\mathrm{h}} 52^{\mathrm{m}}\) multiplied by 2 make to be fubtr. "Remains the mean time according to the Old Stile, F̛une - - \(5^{\mathrm{d}} 8^{\mathrm{h}} 16^{\mathrm{m}}\)
Entire hundreds in 1909 are 19, which divide by 4, quotes - -4
And leaves a remainder of
Which quotient multiplied by 3 makes 12, and the remainder added makes - - 15
From which fubtract 2 ,
and there remains - 13
Which number of days
added to the above time,
Old Stile, gives Fune - \(18^{d} 8^{h} 16^{m}\) Morn. N.S.

So the mean time of New Moon in fune, 1909, New Stile is the 18th day, at 16 minutes paft 8 in the Morning.

If II days be added to the time of any New Moon in this Table, it will give the time of that New Moon according to the Nere Stile till the year 1800. And if 14 days 18 hours 22 minutes be added to the mean time of New Moon in either Stile, it will give the mean time of the next Full Moon according to that Stile.

Of the Division of Time.

A Table of the mean Nero Moons, \&c.

Of the Divifion of Time.

Of the Division of Time.

Of the Division of Time.

Of the Division of Time.

The year 1800 begins a new Cycle.

Of the Divifon of Time.

Of the Divifon of Time.

Eafter Cycle deficient.
388. The Cycle of Eafer, allo called the Dionyzan Period, is a revolution of 532 years, found by rnultiplying the Solar Cycle 28 by the Lunar Cycle 19. If the New Moons did not anticipate upon this Cycle, Eafter day would always be the Sunday next after the firft Full Moon which follows the 2 Ift of March. But on account of the above anticipation, \(\$ 422\). to which no proper regard was had before the late alteration of the Stile, the Ecclefiaftic Eafter has feveral times been a week different from the true Eafter within this laft Century: which inconvenience is now remedied by making the Table which ufed to find Ealler for ever, in the Common Prayer Book, of no longer ufe than the Lunar difference from the Nerw Stile will admit of.

Number of Direction.
389. The earlieft Eafter pofible is the 22 d of March, the lateff the 25 th of April. Within chefe limits are 35 days, and the number belonging to each of them is called the Number of Direction; becaufe thereby the time of Eafter is found for any given year. To find the Number of Direction, according to the New Stile, enter Table V. following this Chapter, with the compleat hundreds of any given year at the top, and the years thereof (if any) below a hundred at the left hand; and where the columns meet is the Dominical Letter for the given year. Then enter Table 1. with the compleat hundreds of the fame year at the left hand, and the years below a hundred at the top; and where the columns meet is the Golden Number for the fame year. Laftly, enter Table II. with the Dominical Letter at the left hand and Golden Number at the top; and where the columns meet is the Number of Direction for that year; which number, added to the 2 it day of \(M\) arch, fhews on what day, either of March or April, Eafirs Sunday falls in that year. Thus the Dominical Letter New Stile for the year 1757 is \(B\) (Table V.) and the Golden Number is 10, (Table I.) by which,
in Table II. the Number of Direction is found to be 20; which, reckoning from the 2 Ift of March, ends on the 1oth of April, that is, Eafter Sunday, in the year 1757. N. B. There are always two Dominical Letters to the Leap-year, the firft of which takes place to the 24th of February, the laft for the following part of the year.
390. The firf Seven letters of the Alphabet are commonly placed in the annual Almanacks, to hew on what days of the week the days of the months fall throughout the year. And becaufe one of thofe feven Letters muft neceffarily ftand againft Sunday, it is printed in a capital form, and Doninical Letter.

To find the true Eafer. called the Dominical Letter; the other fix being inferted in fmall characters, to denote the other fix days of the week. Now, fince a common fulian Year contains \({ }_{3} 65\) Days, if this number be divided by 7 (the number of days in a week) there will remain one day. If there had been no remainder, it is plain the year would conftantly begin andend on the fame day of the week. But fince 1 remains, it is as plain that the year muft begin and end on the fame day of the week; and therefore the next year will begin on the day following. Hence, when Fanuary begins on Sunday, \(A\) is the Dominical or Sunday Letter for that year: then, becaufe the next year begins on Monday, the Sunday will fall on the feventh day, to which is annexed the feventh Let\(\operatorname{ter} G\), which therefore will be the Dominical Letter for all that year: and as the third year will begin on Tuefday, the Sunday will fall on the fixth day; therefore \(F\) will be the Sunday Letter for that year. Whence it is evident, that the Sunday Letters will go annually in a retrograde order thus, \(G, F, E, D\), \(C, B, A\). And in the courfe of feven years, if they were all common ones, the fame days of the week and Dominical Letters would return to the fame days of the months. But becaufe there are 365 days in a Leap-year, if this number be divided by 7, there will remain two days over and above the

52 weeks of which the year confifts. And therefore, if the Leap-year begins on Sunday, it will end on Monday ; and the next year will begin on Tuefday, the firft sunday whereof muft fall on the fixth of fanuary, to which is annexed the Letter \(F\), and not \(G\), as in common years: by this means, the Leap-year returning every fourth year, the order of the Dominical Letters is interrupted; and the feries cannot return to its firft ftate till after four times feven, or 28 years; and then the fame days of the months return in order to the fame days of the week as before.

To find the Dominical Letter.

Having found the Dominical Letter for the given year, enter Table VI. with the Dominical Letter at the head; and under it, all the days in that column are Sundays, in the divifions of the months; the next column to the right hand are Mondays; the next, Tuefdays; and fo on to the laft column under \(G\); from which go back to the column un\(\operatorname{der} A\), and thence proceed toward the right hand as before. Thus, in the year 1757, the Dominical Letter Nero Stile is \(B\), in Table V; then in Table VI. all the days under \(B\) are Sundays in that year, viz. the \(2 \mathrm{~d}, 9 \mathrm{th}, 16 \mathrm{th}, 23 \mathrm{~d}\), and 3 oth of fanuery and OEtober; the 6th, I 3th, 20th, and 27 th of Fe bruary, March, and November: the 3d, Ioth, and 17 th of April and \(\mathcal{F} u l y\), together with the 3, ift of fuly; and fo on to the foot of the column. Then, of courfe, all the days under \(C\) are Mondays, namely, the \(3^{\mathrm{d}}\), roth, \(\mathcal{F}^{c}\). of Fanuary and OEiober; and fo of all the reft in that column. If the day of the week anfwering to any day of the montb be required, it is eatily had from the fame Table by the Letter that ftands at the top of the column in which the given day of the month is found. Thus, the Letter that ftands over the 28 ch of May is \(A\); and in the year 585 before Christ, the Dominical Letters were found to be \(F E, \$ 391\); which being a Leapyear, and Etaking place from the 24 th of February to the end of that year, fhews by the Table that the 25 th of May was on a Sunday; and therefore the 28th inuft have been on a Wednefday; for when \(E\) ftands for Surday, \(F\) muft Atand for Monday, \(G\) for \(\mathcal{T} u e f d a y\), \&xc. Hence, as it is faid that the famous Eclipfe of the Sun foretold by Thales, by which a peace was brought about between the Medes and Lydians, happened on the 28 th of ATcy, in the 585 th year before Christ, it fell on a IVednefday.
393. From the multiplication of the Solar Cycle flian of 23 years into the Lunar Cycle of 19 years, and l'eiod. the Roman Indiction of is years, arifes the great C c
julian

Fulian Period, confifting of 7980 years, which had its beginning 764 years before Straucbius's fuppofed year of the Creation (for no later could all the three Cycles begin together), and it is not yet completed: and therefore it includes all other Cycles, Periods, and Æras. There is but one year in the whole Period that has the fame numbers for the three Cycles of which it is made up: and, therefore, if hiftorians had remarked in their writings the Cycles of each year, there had been no difpute about the time of any action recorded by them.

To find the year of this Period:

And the Cycles of that year.

The true SEra of Cruser's Bizih.
394. The Diony/zan or vulgar 生ra of Christ's birth was about the end of the year of the Fulian Period 47 I 3 ; and confequently the firf year of his age, according to that account, was the 47 14th year of the faid Period. Therefore, if to the current year of Christ we add 4713 , the fum will be the year of the Fulian Period. So the year 1757 will be found to be the 647 oth year of that period. Or, to find the year of the Fulian Period anfwering to any given year before the firft year of CHRIST, fubtract the number of that given year from 4714 , and the remainder will be the year of the fulian Period. Thus, the year 585 before the firt year of Christ (which was the \(5^{8} 4\) th before his birth) was the 4129 th year of the faid Period. Laftly, to find the Cycles of the Sun, Moon, and Indiction, for any given year of this Period, divide the given year by 28,19 , and 15 ; the three remainders will be the Cycles fought, and the Quotients the numbers of Cycles run fince the beginning of the Pe riod. So in the above 47 r4th year of the \(\mathcal{F u l i a n}\) Period, the Cycle of the Sun was io, the Cycle of the Moon 2, and the Cycle of Indiction 4; the Solar Cycle having run through 168 courles, the Lunar 248, and the Indiction 314.

395: The vulgar Æra of Christ's Birth was never fettled till the year 527, when Dionyyus Exiguus, a Roman Abbot, fixed it to the end of the \(473^{\text {th }}\) year of the Fulion Period, which was four
years too late. - For our Saviour was born before the death of Herod, who fought to kill him as foon as he heard of his birth. And according to the reftimony of Fofepbus (B. xvii. ch. 8.) there was an Eclipfe of the Moon in the time of Herod's laft illnefs; which Eclipfe appears by our Aftronomical Tables to have been in the year of the Fulian Period 4710 , March I 3 th, at 3 hours paft midnight at ferufalem. Now as our Saviour mult have been born fome months before Herod's death, fince in the interval he was carried into Egypt, the lateft time in which we can fix the true Æra of his birth is about the end of the 4709 th year of the Fuliain Period.

There is a remarkable Prophecy delivered to us in the ninth chapter of the book of Daniel, which, from a certain Epoch, fixes the time of reftoring the flate of the fecos, and of building the walls of Ferufales, the coming of the Messiah, his death, and the deftruction of ferufalem.-But fome parts of this prophecy (Ver. 25.) are fo injudiciounly pointed in our Englifh tranfation of the Bible, that, if they be read according to thofe ftops of point. ing, they are quite unintelligible.-But the learned Dr. Prideaux, by altering thefe ftops, makes the fenfe very plain: and as he feems to me to have explained the whole of it better than any orher author I have read on the fubject, I fhall fet down the whole of the Prophecy according as he has pointed it, to fhew in what manner he has divided it into four different parts.

Ver. 24. Seventy weeks are delermined upon tby People, and upon thy boly City, to finilb the tranfgreffion, and to make an end of Sins, and to make reconciliation for Iniquity, and to bring in everlafting Righteounnefs, and to Seal up the Vifion, and the Prophecy, and to anoint the moft boly. Ver. 25. Know therefore and underftand, that from the going forth of the Commandment to reftore and build Jerufalem unto the Messiah the Prince ball be jeven weeks and three-
\[
\mathrm{Ccz}_{2} \quad \text { fore }
\] and the wall even in troublous times. Ver. 26. And after threefcore and two weeks fall Messiah be cut off, but not for bimfelf, and the people of the Prince that Jall come, Soll deffroy the City and SanEluary, and the end thereof fuall be with a flood, and unto the end of the War defolations are determined. Ver. 27. And be Joald confirm the Covenant reith many for one week, and in the midft * of the week be facli caufe the sacrifice and the oblation to ceafe, and for the overSpreading of abosminations be faall make it defolate even until the Confummation, and that deternined Soall be poured upon the defolate.

This Commandment was given to Ezra by \(A r\) taxerxes Longimanus, in the feventh year of that King's reign (Ezra, ch. vii. ver. II-26.) Ezra began the work, which was afterwards accomplifhed by Nebemiab: in which they met with great oppofition and trouble from the Samaritans and others, during the firft feven weeks, or 49 years.

From this accompliflment till the time when Christ's meffenger, Fobn the Baptif, began to preach the Kingdom of the Messiah, 62 weeks, or 434 years.

From thence to the beginning of Christ's public miniftry, half a week, or \(3^{\frac{1}{2}}\) years.

And from thence to the death of Christ, half a week, or \(3^{\frac{3}{2}}\) years; in which half week he preached, and confirmed the Covenant of the Gofpel with many.

In all, from the going forth of the Commandment till the Death of Christ, 70 weeks, or 490 years.

And, laftly, in a very ftriking manner, the Prophecy foretels what fhould come to paifs after the expiration of the Jeventy woeks; namely, the DeAruction of the City and Sancluary by the people of the Prince ibat was to come; which were the Romian
- The Dodior fays, that this ought to be rendered, the balf part of lbe rueek, not abs midft.
armies, under the command of \(\mathcal{T i t u s}\) their Prince, who came upon Ferufalem as a torrent, with their idolatrous images, which were an abomination to the ferus, and under which they marched againft them, invaded their land, and befieged their holy City, and by a calamitous war brought fuch utter deftruction upon both, that the Fews have never been able to recover themfelves, even to this day.

Now, both by the undoubted Canon of Ptolemy, and the famous Era of Nabonaffar, the beginning of the feventh year of the reign of Artaxerxes Longimanus, King of Perfia, (who is called Abafuerus in the book of Efther) is pinned down to the 4256 th year of the Fulian Period, in which year he gave Ezra the above-mentioned ample Commiffion: from which count 490 years to the death of Christ, and it will carry the fame to the 4746 th year of the fulian Period.

Our Saturday is the Fewi/h Sabbath: and it is plain from St. Mark, ch. xv. ver. 42. and St. Luke, ch. xxiii. ver. 54, that Christ was crucified on a Friday, feeing the crucifixion was on the day next before the ferwifla Sabbath. - And according to St. Fobn, ch. xviii. ver. 28. on the day that the Paffover was to be eaten, at lealt by many of the Jews.

The Jews reckoned their months by the Moon, and their years by the apparent revolution of the Sun: and they ate the Paffover on the 14th day of the month of \(N i / a n\), which was the firft month of their year reckoning from the firtt appearance of the New Moon, which at that time of the year might be on the evening of the day next after the change, if the fky was clear. So that their isth day of the month anfwers to our fifteenth day of the Moon, on which fhe is full.-Confequently, the Paffover was always kept on the day of Full Moon.

And the Full Moon at which it was kept, was that one which happened next after the Vernal Equinox. For Fofepbus exprefsly fays (Antiq. B. iii. ch. 10.) "The Paffover was kept on the 14 th day
\[
\mathrm{Cc} 3
\]
" of the month of Nifan, according to the Moon "when the Sun was in Aries." - And the Sun always enters Aries at the inftant of the Vernal Equinox; which, in our Saviour's time, fell on the 22d day of March.

The difpute among Chronologers about the year of Christ's Death is limited to four or five years at moft. - But, as we have fhewn that he was crucified on the day of a Pafcal Full Moon, and on a Friday, all that we have to do, in order to afcertain the year of his death, is only to compute in which of thofe years there was a Paffover Full Moon on a Friday. - For, the Full Moons anticipate eleven days every year (12 Lunar Months being fo much fhort of a Solar year), and therefore, once in every three years at leaft, the Jews were obliged to fet their Paffover a whole month forwarder than it fell by the courfe of the Moon, on the year next before, in order to keep it at the Full Moon nextafter the Equinox; therefore there could fot be two Paffovers on the fame nominal day of the week within the compais of a few neighbouring years. And I find by calculation, the only Paffover Full Moon that fell on a Friday, for feveral years before or after the difputed year of the Crucifixion, was on the 3 d day of April, in the 4746 th year of the Julian Yeriod, which was the 490th year after Ezra received the above-mentioned Commiffion from As taxerxes Longimanus, according to Ptolemy's Canon, and the year in which the Messiah was to be cut off, according to the Prophecy, reckoning from the going forth of that Commiffion or Commandment: and this 490 th year was the 33 d year of our Saviour's Age, reckoning from the vulgar Era of his birth; but the 37 th, reckoning from the true Æra thereof.

And, when we reflect on what the focustold him, fome time before his death (70 bn , viii. 57.) "Thous "sarl not yet fifty years old," we muft confefs that it fhould feem much likelier to have been faid to a
perfon near forty than to one but juft turned of thirty. And we may eafily fuppofe that St. Luke expreffed himfelf only in round numbers, when he faid that Cbrift was baptized about the 30 th year of bis age, when he began his public miniftry; as our Saviour himfelf did, when he faid he fhould lie three days and tbree nigbts in the grave.

The 4746th year of the Fuilian Period, which we have aftronomically proved to be the year of the Crucifixion, was the 4 th year of the 202 d Olympiad; in which year, Pblegon, a heathen writer, tells us, there was the moft extraordinary Eclipfe of the Sun that ever was feen. But I find by calculation, that there could be no total Eclipfe of the Sun at Ferufalem, in a natural way, in that year. - So that what Pblegon here calls an Eclipfe of the Sun feems to have been the great darknefs for three hours at the time of our Saviour's Crucifixion, as mentioneal by the Evangelifts: a darknefs altogether fupernatural, as the Moon was then in the fide of the Heavens oppofite to the Sun: and therefore could not poffibly darken the Sun to any part of the Earth.
396. As there are certain fixed points in the Heavens from which Aftronomers begin their computations, fo there are certain points of time from which hiftorians begin to reckon; and thefe points, or roots of time, are called Etras or Epochs. The moft remarkable Eras are thofe of the Creation, the Greek Olympiads, the building of Rome, the Era of Nabonafar, the death of Alexander, the Birth of Christ, the Arabian ilegira, and the Perfian Yefdegird: all which, togeiher with fectral ochers of lefs note, have their Beginnings in the following Table fixed to the years of the Julian Period, to the Age of the World at thofe times, and to the Years before and after the year of Christ's birth.

\section*{ATable of remarkable Eras and Events.}

50. Agrippa builds the Pantbeon at Rome
51. The true Æra of Christ's Birth 52. The Death of Herod
53. The Dionyfan or vulgar Ira of Christ's Birth
54. The true year of his Crucifixion

57. Conftantius defeats the Piets in Britain - \(-\mid 50194313\)
58. The Council of Nice -

64. The Sun, Moon, and all the Planets in Libra, \(\left.\begin{array}{l}\text { Sept. 14, as feen from the Earth }\end{array}\right\}\left\{\begin{array}{l}5899 \mid 51931186\end{array}\right.\)
65. The Art of Printing difcovered - 615354471440
66. The Reformation begun by Martin Lutber - -. \(623055^{24} 1^{11} 5^{17}\)

In fixing the year of the Creation to the 706th year of the Gulian Period, which was the 4007th year before the year of Christ's Birth, I have followed Mr. Bedford in his Scripture Chronology, printed A. D. 1730 , and Mr. Kennedy, in a work of the fame kind, printed A. D. 1762.-Mr. Bedford takes it only for granted that the World was created at the time of the Autumnal Equinox; but Mr. Konnedy affirms that the faid Equinox was at the noon of the fourth day of the Creationweek, and that the Moon was then 24 hours paft her Oppofition to the Sun.- If Mofes had told us the fame things, we fhould have had fufficient data for fixing the Eera of the Creation: but, as he has been fllent on thefe points, we muft confider the beft accounts of Chronologers as entirely hypothetical and uncertain.

Table I. Shewing the Golden Number (which is the fame both in the Old and New Stile) from the Cbrifian AE ra to A. D. 380.

\section*{Years lefs than an Hundred.}

Thbie

Table VI. Sherwing the Days of the Montlis, for both Stiles, by the Dominical Letters.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Week Days. & A & B & C & D & E & F & G \\
\hline \multirow{5}{*}{\begin{tabular}{l}
January 31 \\
October 31
\end{tabular}} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline & 22 & 23 & 24 & 25 & 26 & 27 & 28 \\
\hline & 29 & 30 & 31 & & & & \\
\hline \multirow[b]{3}{*}{Feb. 28-29} & & & & 1 & 2 & 3 & 4 \\
\hline & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline \multirow[t]{2}{*}{March 31 November 30} & 19 & 20 & 21 & 22 & 23 & 24. & 25 \\
\hline & 26 & 27 & 28 & 29 & 30 & 31 & \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& \text { April } 30 \\
& \text { July 31 }
\end{aligned}
\]} & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
\hline & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\
\hline & 30 & 31 & & - & & & \\
\hline \multirow{3}{*}{Auguft 31} & 13 & 14 & 15 & 16 & 17 & 18 & 12 \\
\hline & 20 & 21 & 22 & 23 & 24 & & 19 \\
\hline & 27 & 28 & 29 & 30 & 31 & 2 & 2 \\
\hline \multirow{6}{*}{September 30 December 3 :} & & & & & & 1 & \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline & 31 & & & & & & \\
\hline \multirow{5}{*}{May \({ }^{1}\)} & & & , & 10 & 4 & 5 & 0 \\
\hline & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline & 1,4 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline & 21 & 22 & 23 & 24 & 25 & 26 & \(2 \%\) \\
\hline & 28 & 29 & 30 & 31 & & & \\
\hline \multirow{5}{*}{June 30} & & & & & 1 & 2 & \\
\hline & 1 & 5 & 6 & 7 & 8 & 9 & \\
\hline & 11 & 12 & 13 & 14 & 15 & 16 & 1 \\
\hline & 18 & 19 & 20 & 21 & 22 & 23 & \\
\hline & 25 & 26 & 27 & 28 & 29 & 30 & \\
\hline
\end{tabular}

CHAP.

\section*{C H A P. XXII.}

A Defcriptiom of the Aftronomical Macbinery serving to explain and illuftrate the foregoing part of this Ireatife.

Fronting the Title-page. The OR RERY.

The Sun.
397. 7 HE Orrery. This Machine fhew's the Motions of the Sun, Mercury, Venus, Earth, and Moon, and occafionally, the fuperior Planets, Mars, Jupiter, and Saturn, may be put on; Jupiter's four Satellites are moved round him in their proper times by a finall winch; and Saturn has his five Satellites, and his Ring, which keeps its Parallelifm round the Sun; and by a Lamp put in the Sun's place, the Ring fhews all the Phafes defcribed in the 204th Article.
In the Center, No. i, reprefents the Sun, fupported by its Axis inclining almoft 8 Degrees from the Axis of the Ecliptic; and turning round in \(25^{\frac{1}{4}}\) days on its Axis, of which the North Pole inclines toward the 8th Degree of Pifces in the
The Eclip. tic.

Mercury.

Venus. great Ecliptic (No. II.), whereon the months and Days are engraven over the Signs and Degrees in which the Sun appears, as feen from the Earth, on the different days of the year.

The neareft Planet (No. 2.) to the Sun is Mercurry, which goes round him in 87 days 23 hours, or \(87 \frac{23}{2} \frac{3}{7}\) diurnal rotations of the Earth; but has no Motion round its Axis in the Machine, becaufe the time of its diurnal Motion in the Heavens is not known to us.

The next Planet in order is Venus (No. 3.) which performs her annual courle in 224 days 17 hours; and tutns round, her Axis in 24 days 8 hours, or in \(24 \frac{1}{3}\) diurnal rotations of the Larth. Her Axis inclines 75 Degrees from the \(A\) xis of the Ecliptic, and her North Pole inclines toward the 2oth Degree of Aquarius, according to the obfervarions of Banchini.

Biancbini. She fhews all the Phenomena defcribed from the 3oth to the 44th Article in Chap. I.

Next without the Orbit of Venus is the Earth, Tbe Earth: (No. 4.) which turns round its Axis, to any fixed point at a great diftance, in 23 hours 56 minutes 4 feconds, of mean folar time (\(\$ 22 \mathrm{I}, \mathcal{E}^{\text {Seq.}}\).) but from the Sun to the Sun again in 24 hours of the fame time. No. 6. is a fydereal Dial-plate under the Earth; and No. 7. a folar Dial-plate on the cover of the Machine. The Index of the former fhews fydereal, and of the latter, folar time ; and hence, the former Index gains one entire revolution on the latter every year, as 365 folar or natural days contain 366 fydereal days, or apparentrevolutions of the Stars. In the time that the Earth makes. \(365^{\frac{1}{4}}\) diurnal rotations on its Axis, it goes ance round the Sun in the Plane of the Ecliptic; and always keeps oppofite to a moving Index (No. 10.) which fhews the Sun's apparent daily change of place, aud alfo the days of the months.

The Earth is half covered with a black cap, for dividing the apparently enlightened half next the Sun from the other half, which when turned away from him is in the dark. The edge of the cap reprelents the Circle bounding Ligbt and Darkne/s, and flews at what time the Sun rifes and fets to all places chroughout the year. The Earth's Axis inclines \(23^{\frac{1}{2}}\) Degrees from the Axis of the Ecliptic, the North Pole inclines toward the beginning of Cancer, and keeps its Parallelifm throughout its annual Courfe, \(\$ 48,202\); fo that in Summer the norihern parts of the Earth incline toward the Sun, and in Winter from him; by which means the different lengths of days and nights, and the caule of the various feafons, are demonftrated to fight.

There is a broad Horizon, to the upper fide of which is fixed a Meridian femicircle in the North and Souch Points, graduated on both fides from the Horizon to \(90^{\circ}\) in the Zenith, or verrical Point.

The edge of the Horizon is graduated from the Eaft and Weft to the South and North Points, and within thefe Divifions are the Points of the Compafs. From the lower fide of this thin Horizonplate ftand out four fmall Wires, to which is fixed a Twilight-circle, 18 Degrees from the graduated fide of the Horizon all round. This Horizon may be put upon the Earth (when the cap is taken away) and rectified to the Latitude of any place: and then, by a fmall Wire called the Solar Ray, which may be put on fo as to proceed directly from the Sun's Center toward the Earth's, but to come no farther than almoft to touch the Horizon. The beginning of Twilight, time of Sun-rifing, with his Amplitude, Meridian Altitude, Time of Setting, Amplitude then, and End of Twilight, are fhewn for every day of the year, at that place to which the Horizon is rectified.
The Moon.
The Moon (No. 5.) goes round the Earth, from between it and any fixed point at a great diftance, in 27 days 7 hours 43 minutes, or through all the Signs and Degrees of her Orbit; which is called ber Periodical Revolution; but fhe goes round from the Sun to the Sun again, or from Change to Change, in 29 days 12 hours 45 minutes, which is her Synodical Revolution; and in that time fhe exhibits all the Phafes already defcribed, \(\$ 255\).

When the above-mentioned Horizon is rectified to the Latitude of any given place, the Times of the Moon's rifing and fetting, together with her Amplitude, are fhewn to that place as well as the Sun's ; and all the various Phenomena of the Har-velt-Moon, §273, छ Seq. are made obvious to fight.
The Nodes, The Moon's orbit (No. 9.) is inclined to the Ecliptic (No. 11.), one half being above, and the other below it. The Nodes or Points at o and o, lie in the Plane of the Ecliptic, as defcribed \$317, 318, and Thift backward through all its Signs and 1)egrees in \(18 \frac{2}{8}\) years. The Degrees of the Moon's

Latitude, to the higheft at \(N L\) (North Latitude) and loweft at \(\mathcal{S L}\) (South Latitude), are engraven both ways from her Nodes at o and 0; and, as the Moon rifes and falls in her Orbit according to its inclination, her Latitude and Diftance from her Nodes are fhewn for every day; having firft rectified her Orbit fo as to fet the Nodes to their proper places in the Ecliptic: and then, as they come about at different, and almoft oppofite, times of the year, \(\S 319\), and point twice toward the Sun, all the Eclipfes may be Thewn for hundreds of years (without any new rectification) by turning the Machinery backward for time paft, or forward for time to come. At 17 Degrees diffance from each Node, on both fides is engraven a fmall Sun; and at 12 Degrees diftance, a fmall Moon; which fhew the limits of folar and lunar Eclipfes, §317: and when, at any change, the Moon falls between either of thefe Suns and the Node, the Sun will be eclipfed on the day pointed to by the Annual Index (No. Io.); and as the Moon has then North or South Latitude, one may eafily judge whether that Eclipfe will be vifible in the Northern or Southern Hemifphere ; efpecially as the Earth's Axis inclines toward the Sun or from him at that time. And when, at any Full, the Moon falls between either of the little Moons and Node, the will be eclipfed, and the Annual-Index fhews the day of that Eclipfe. There is a Circle of \(29 \frac{1}{2}\) equal parts (No.8.) on the cover of the Machine, on which an Index fhews the days of the Moon's age.

A femi-ellipfis and femi-circle are fixed to an el-PLATE liptical ring, which being put like a cap upon the Earth, and the forked part \(F\) upon the Moon, fhews the tides as the Earth turns round within them, and they are led round it by the Moon. When the different places come to the femi-ellipfis \(A a E b B\), they have Tides of Flood; and when they come to the femi-circle CED, they have Tides of Ebb, \(\$ 304,305\); the Index on the HourDd2 Circle

Circle (No. 7.) Thewing the times of thefe Phenomena.

There is a jointed Wire, of which one end being put into a hole in the upright ftem that holds the Earth's cap, and the Wire laid into a fmall forked piece which may be occafionally put upon Venus or Mercury, fhews the direct and retrograde Motions of thefe two Planets, with their fationary Times and Places as feen from the Earth.

The whole Machinery is turned by a winch or handle (No. 12.), and is fo eafily moved, that a clock may turn it without any danger of ftopping.

To give a Plate of the wheel-work of this \(\mathrm{Ma}_{\mathrm{a}}\) chine would anfwer no purpofe, becaufe many of the wheels lie fo behind others, as to hide them from fight in any view whatever.

Another Orrery.
398. Anotber Orrery. In this Machine, which is the fimpleft I ever faw, for fhewing the diurnal and annual motions of the Earth, together with the motion of the Moon and her Nodes, \(A\) and \(B\) are two oblong fquare plates held together by four upright pillars; of which three appear at \(f, g\), and \(g\) 2. Under the Plate \(A\) is an endlefs fcrew on the Axis of the handle \(b\), which works in a wheel fixed on the fame Axis with the double-grooved wheel \(E\); and on the top of this Axis is fixed the toothed wheel \(i\), which turns the pinion \(k\), on the top of whofe Axis is the pinion \(k 2\) which turns a nother pinion \(b 2\), and that turns a third, which being fixed on \(a 2\), the Axis of the Earth \(U\), turns it round, and the Earth with it : this laft Axis inclines in an angle of \(23 \frac{\pi}{2}\) Degrees. The fupporter \(X_{2}\), in which the Axis of the Earth turns, is fixed to the moveable Plate \(C\).

In the fixed Plate \(B\), beyond \(H\), is fixed the Atrong wire \(d\), on which hangs the Sun \(\tau\), fo as it may turn round the wire. To this Sun is fixed the wire or folar ray \(Z\), which (as the Earth \(U\) turns round its Axis) points to all the places that the Sun paffes vertically over, every day of the year.

The Earth is half covered with a black cap \(a\), as in the former Orrery, for dividing the day from the night; and, as the different places come out from below the edge of the cap, or go in below it, they fhew the times of Sun-rifing and fetting every day of the year. This cap is fixed on the wire \(b\), which has a forked piece \(C\) turning round the wire \(d\) : and, as the Earth goes round the Sun it carries the Cap, Wire, and folar Ray round him; fo that the folar Ray conftantly points toward the Earch's Center.

On the Axis of the pinion \(k\) is the pinion \(m\), which turns a wheel on the cock or fupporter \(n\), and on the Axis of this wheel neareft \(n\) is a pinion (hid from view) under the plate \(C\), which pinion turns a wheel that carries the Moon \(V\) round the Earth \(U\); the Moon's Axis rifing and falling in the focket W , which is fixed to the triangular piece above \(Z\); and this piece is fixed to the top of the Axis of the laft-mentioned wheel. The focket \(W\) is fit on the outermoft fide; and in this nit the two pins near \(\Upsilon\), fixed in the Moon's Axis, move up and down; one of them being above the inclined Plane \(Y X\); and the other below it. By this mechanifm, the Moon \(V\) moves round the Earth \(\mathcal{T}\) in the inclined Orbit \(q\), parallel to the Plane of the Ring \(Y X\); of which the Defcending Node is at \(X\), and the Afcending Node oppofite to it, but hid by the fupporter \(X_{2}\).

The fmall wheel \(E\) turns the large wheels \(D\) and \(F\), of equal diameters, by cat-gut ftrings croffing between them: and the Axes of thefe two wheels are cranked at \(G\) and \(H\), above the Plate \(B\). The upright flems of thefe cranks going through the Plate \(C\), carry it over and over the fixed Plate \(B\), with a motion which carries the Earth U round the Sun T, keeping the Earth's Axis always parallel to itfelf, or fill inclining toward the left hand of the plate; and fhewing the viciffitudes of feafons, 26 defcribed in the tenth chapter. As the Earth
goes round the Sun, the pinion \(k\) goes round the wheel \(i\), for the Axis of \(k\) never touches the fixed Plate \(B\), but turns on a wire fixed into the Plate \(C\).

On the top of the crank \(G\) is an Index \(L\), which goes round the Circle \(m_{2}\) in the time that the Earth goes round the Sun, and points to the days of the months; which together with the names of the feafons, are marked in this Circle.

This Index has a fmall grooved wheel \(L\) fixed upon it, round which, and the Plate \(Z\), goes a catgut ftring croffing between them; and by this means the Moon's inclined Plane \(\Upsilon X\), with its Nodes, is turned backward, for fhewing the times and returns of Eclipfes, \(\$ 310.320\).

The following parts of this machine mult be confidered as diftinct from thofe already defcribed.

Toward the right hand, let \(S\) be the Earth hung on the wire \(e\), which is fixed into the Plate \(B\); and let \(O\) be the Moon fixed on the Axis \(M\), and turning round within the cap \(P\), in which, and in the Plate \(C\), the crooked wire 2 is fixed. On the Axis \(M\) is alfo fixed the Index \(K\), which goes round a Circle \(b_{2}\), divided into \(29 \frac{2}{2}\) equal parts, which are the days of the Moon's age: but to avoid confufion in the fcheme, it is only marked with the numeral figures I 234 , for the Quarters. As the crank \(H\) carries this Moon round the Earth \(S\) in the Orbit \(t\), fhe fhews all her Phafes by means of the cap \(P\) for the different days of her age, which are fhewn by the Index \(K\); this Index turning jult as the Moon \(O\) does, demontrates her turning round her Axis, as fhe ftill keeps the fame fide toward the Earth S, §. 262.

At the other end of the Plate \(C\), a Moon \(N\) goes round an Earth \(R\) in the Orbit \(p\). But this Moon's Axis is Auck fatt into the Plate \(C\) at \(S_{2}\), fo that neither Moon nor Axis can turn round; and as this Moon goes round her Earth, he fhews herielf all round to it; which proves, that if the Moon
was feen all round from the Earth in a Lunation, fhe could not turn round her Axis.
\(N\). B. If there were only the two Wheels \(D\) and \(F\), with a cat-gut ftring over them, but not croffing between them, the Axis of the Earth \(U\) would keep its Parallelifm round the Sun \(\mathcal{T}\), and fhew all the feafons; as I fometimes make thefe Machines; and the Moon \(O\) would go round the Earth \(S\), fhewing her Phafes as above; as likewife would the Moon \(N\) round the Earth \(R\); but then, neither could the diurnal motion of the Earth \(U\) on its Axis be fhewn, nor the Motion of the Moon \(V\) round the Earth.
399. In the year 1746 I contrived a very fimple Machine, and defcribed its performance in a fmall Treatife upon the Phenomena of the HarveftMoon, publifhed in the year 1747 . I improved it foon after, by adding another wheel, and called it The Calculator. It may be eafily made by any Gentleman who has a mechanical Genius.

The great flat Ring fupported by twelve pillars, and on which the twelve Signs with their refpective

The CALCUIATOR.

PL4TE
V1II.
Fig. 1, Degrees are laid down, is the Ecliptic; nearly in the center of it is the Sun \(S\), fupported by the ftrong crooked Wire \(I\); and from the Sun proceeds a Wire \(W\), called the Solar Ray, pointing toward the center of the Earch \(E\), which is furnifhed with a moveable Horizon \(H\), together with a brazen Meridian, and Quadrant of Altitude. \(R\) is a fmall Ecliptic, whole Plane coincides with that of the great one, and has the like Signs and Degrees marked upon it ; and is fupported by two Wires \(D\) and \(D\), which are put into the Plate \(P P\), but may be taken off at pleafure. As the liarth goes round the Sun, the Signs of this fmall Circle keep parallel to themfelves, and to thofe of the great Ecliptic. When it is taken off, and the folar Ray \(W\), drawn firther out, io as almoft to touch the Horizon \(H\), or the Quadrant of Altitude, the Horizon D d 4
being rectified to any given Latitude, and the Earth turned round its Axis by hand, the point of the Wire \(W\) fhews the Sun's Declination in pafing over the graduated brafs Meridian, and his height at any given time upon the Quadrant of Altitude, tagether with his Azimuth, or point of bearing upon the Horizon at that time; and likewife his Amplitude, and time of rifing and fetting by the HourIndex, for any day of the year that the Annual-Index \(U\) points to in the Circle of Months below the Sun. \(M\) is a Solar-Index or Pointer fupported by the wire \(L\), which is fixed into the knob \(K\) : the ufe of this Index is to fhew the Sun's place in the Ecliptic every day in the year; for it goes over the Signs and Degrees as the Index \(U\) goes over the Months and Days; or rather, as they pafs under the Index \(U\), in moving the cover-plate with the Earth and its Furniture round the Sun; for the Index \(U\) is fixed tight on the immoveable \(A\) xis in the Center of the Machine. \(K\) is a knob or handle for moving the Earth round the Sun, and the Moon round the Earth.

As the Earth is carried round the Sun, irs Axis conftantly keeps the fame oblique direction, or parallel to itfelf, \(\$ 4.8,202\), fhewing thereby the different lengths of days and njghts at different times of the year, with all the various fealons. And, in one annual revolution of the Earth, the Moon \(M\) goes \(12 \frac{1}{T}\) times round it from Change to Change, having an occafional provifion fur fhewing her different Phafes. The lower end of the Moon's Axis bears by a fmall friction-wheel upon the inclined Plane \(\mathcal{T}\), which caufes the Moon to rife above and fink below the Ecliptic \(R\) in every Lunation; crofing it in her Nodes, which ihift back ward through all the Signs and Degrees of the faid Ecliptic, by the retrograde motion of the inclined Plane \(T\), in 18 years and 225 days. On this Plane the Degrees and Parts of the Moon's North and South Latitude are laid down from both
the Nodes, one of which, viz, the Defcending Node, appears at o, by \(D N\) above \(B\); the other Node being hid from Sight on this Plane by the Plate \(P P\); and from both Nodes, at proper diftances, as in the other Orrery, the limits of Eclipfes are marked, and all the folar and lunar Eclipfes are fhewn in the fame manner, for any given year within the limits of 6000 , either before or after the Chriftian Æra. On the plate that covers the wheelwork, under the Sun \(S\), and round the knob \(K\), are Aftronomical Tables, by which the Machine may be rectified to the beginning of any given year within thefe limits, in three or four minutes of time; and when once fet right, may be turned backward for 300 years paft, or forward for as many to come, withour requiring any new rectification. There is a merhod for its adding up the 29th of February every fourth year, and allowing only 28 days to that month for every orher three; but all this being performed by a particular manner of cucting the teeth of the Wheels, and dividing the MonthCircle, too long and intricate to be defcribed here, I fhall only fhew how thefe motions may be performed near enough for common ufe, by whieels with grooves and cat-gut ftrings round them; only here I mutt put the Operator in mind, that the grooves are to be made fharp (not round) bottomed, to keep the ftrings from flipping.

The Moon's Axis moves up and down in the focket \(N\) fixed into the bar \(O\) (which carries her round the Earth) as The rifes above or finks below the E.cliptic ; and immediately below the inclined Plane \(\tau\) is a flat circular plate (between \(\gamma\) and \(\tau\)) on which the different Eccentricities of the Moon's Orbit are laid down : and likewife her mean Anomaly and elliptic Equation, by which her true Place may be very nearly found at any time. Below chis Apogee-plate, which thews the Anomaly, \(\& \mathrm{cc}\). is a Circle \(Y\) divided into \(29 \frac{1}{2}\) equal parts, which
which are the days of the Moon's age : and the forked end \(A\) of the Index \(A B\) (Fig. II.) may be put into the Apogee-part of this plate ; there being juft fuch another index to put into the inclined Plane \(T\) at the Afcending Node: and then the curved points \(B\) of thefe Indexes fhew the direct Motion of the Apogee, and retrograde Motion of the Nodes through the Ecliptic \(R\), with their Places in it at any given time. As the Moon \(M\) goes round the Earth \(E\), the fhews her Place every day in the Ecliptic \(R\), and the lower end of her Axis hews her Latitude and Diftance from her Node on the inclined Plane \(\mathcal{T}\), alfo her Diftance from her A pogee and Perigee, together with her mean Anomaly, the then Eccentricity of her Orbit, and her elliptic Equation, all on the Apogeeplate, and the Day of her Age in the Circle \(\bar{Y}\) of \(29 \frac{1}{2}\) equal parts; for every day of the year pointed out by the Annual Index Uin the Circle of Months.

Having rectified the Machine by the Tables for the beginning of any year, move the Earth and Moon forward by the Knob \(K\), until the Annual Index comes to any given day of the month, then ftop, and not only all the above Phenomena may be fhewn for that day, but alfo, by turning the Earth round its Axis, the Declination, Azimuth, Amplitude, Altitude of the Moon at any hour, and the Times of her rifing and fetting, are fhewn by the Horizon, Quadrant of Altitude, and HourIndex. And in moving the Earth round the Sun, the days of all the New and Full Moons and Eclipjes in any given year are fhewn. The Phenomena of the Harvelt-Moon, and thofe of the Tides, by fuch a cap as that in Plate IX. Fig. 10. put upon the Earthand Moon, together with the folution of many problems not here related, are made conpipicuous.

The eafieft, though not the beft way, that I can inftuit any mechanical perton to make the wheel-
work of fuch a machine, is as follows: which is the way that I made it, before I thought of numbers exact enough to make it worth the trouble of cutting teeth in the wheels.

Fig. \(3^{d}\) of Plate VIII. is a fection of this Machine, in which \(A B C D\) is a frame of wood held together by four pillars at the corners; two of which appear at \(A C\) and \(B D\). In the lower Plate \(C D\) of this frame are three fmall friction-wheels, at equal diftances from each other ; two of them appearing at \(e\) and \(e\). As the frame is moved round, thefe wheels run upon the fixed bottom Plate \(E E\), which fupports the whole work.

In the center of this laft-mentioned Plate is fixed the upright Axis GFFf, and on the fame Axis is fixed the Wheel \(H H H\), in which are four Grooves, \(I, X, k, L\), of different diameters. In thefe Grooves are cat-gut ftrings going alfo round the feparate Wheels \(M, N, O\), and \(P\).

The Wheel \(M\) is fixed on a folid Spindle or Axis the lower pivot of which turns at \(R\) in the under Plate of the moveable frame \(A B C D\); and on the upper end of this Axis is fixed the Plate oo (which is \(P P\), under the Earth, in Fig. I.), and to this Plate is fixed, at an Angle of \(23^{\frac{1}{2}}\) Degrees inclination; the Dial-plate below the Earth \(\mathcal{T}\); on the Axis of which, the Index \(q\)-is turned round by the Earth. This Axis, together with the Wheel \(M\), and Plateoo; keep their Parallelifm in going round the Sun \(S\).

On the Axis of the Wheel \(M\) is a moveable focket, on which the fimall wheel \(N\) is fixed, and on the upper end of this focket is put on tight (but fo as it may be occafionally turned by hand) the bar \(Z Z\) (viz, the bar \(O\) in Fig. I.) which carries the Moon \(m\) round the Earth \(\tau\), by the locket \(n\), fixed into the bar. As the Moon goes round the Earth, her Axis rifes and falls in the focket \(n\); becaufe, on the lower end of her Axis, which is turned inward, there is a fmall friction Wheel s running
on the inclined Plane \(X\) (which is T in Fig. 1.) and fo caufes the Moon alternately to rife above and fink below the little Ecliptic \(V V(R\) in Fig. 1.) in every Lunation.

On the focket or hollow axis of the Wheel \(N_{2}\) there is another focket, on which the Wheel \(O\) is fixed; and the Moon's inclined Plane \(X\) is put tightly on the upper end of this focket, not on a fquare, but on a round, that it may be occafionally fet by hand withoutwrenching the Wheel or Axle.

Laftly, on the hollow Axis of the Wheel \(O\) is another focket, on which is fixed the Wheel \(P\), and on the upper end of this focket is put on tighty the Apogee-plate \(\mathcal{Y}\) (that immediately below \(\tau\) in Fig. 1.). All thefe Axles turn in the upper Plate of the moveable frame at 2 ; which Plate is covered wirh the thin Plate \(c c\) (fcrewed to it) whereon are the fore-mentioned Tables and MonthCircle in Fig. I.

The middle part of the thick fixed Wheel \(H H H\) is much broader than the reft of ir, and comes out between the Wheels \(M\) and \(O\) almof to the Wheel \(N\). To adjuft the diameters of the Grooves of this fixed Wheel to the Grooves of the leparate Wheels \(M, N, O\), and \(P\), lo as they may perform their motions in the proper times, the following method muft be obferved.

The Groove of the Wheel \(M\), which keeps the Parallelifm of the Earth's Axis, muft be precifely of the fame Diameter as the lower Groove I of the fixed Wheel HHH ; but, when this Groove is fo well adjufted as to thew, that in ever fo many annual revolutions of the Earth, its Axis keeps its Parallelifm, as may be obferved by the folar Ray W (Fig. r.) always coming precifely to the fame Degree of the fmall Ecliptic \(R\) at the end of every annual revolution, when the Index \(M\) points to the like Degree in the great Ecliptic; then, with the edge of a thin File, give the Groove of the Wheel \(M 1\) a fimall rub all round, and, by that means lef-
fening the Diameter of the Grove perhaps about the 20th part of a hair's breadth, it will caufe the Earth to fhew the preceflion of the Equinoxes; which, in many annual revolutions, will begin to be fenfible, as the Earth's Axis deviates flowly from its Parallelifin, \(\S 246\), toward the antecedent Signs of the Ecliptic.

The Diaineter of the Groove of the Wheel \(N\), which carries the Moon round the Earth, mult be to the Diameter of the Groove \(X\), as a Lunation is to a year, that is, as \(29 \frac{\pi}{2}\) to \(365 \frac{\mathrm{I}}{\frac{1}{4}}\).

The Diameter of the Groove of the Wheel \(O\), which turns the inclined Plane \(X\) with the Moon's Nodes backward, muft be to the Diameter of the Groove \(k\), as 20 to \(18 \frac{225}{365}\). And,

Laftly, the Diameter of the Groove of the Wheel \(P\), which carries the Moon's Apogee forward, mult be to the Diameter of the Groove \(L\), as 70 to 62 .

But after all this nice adjuftment of the Grooves to the proportional times of their refpective Wheels turning round; and which feems to promife very well in Theory, there will ftill be found a neceffity of a farther adjuftment by hand; becaufe proper allowance muft be made for the Diameters of the cat-gut ftrings : and the Grooves muft be fo adjufted by hand, as, that in the time the Earth is moved once round the Sun, the Moon muft perform 12 fynodical revolutions round the Earth, and be almoft in days old in her i 3 th revolution. The inclined Plane with its Nodes mult go once round back ward through all the Signs and Degrees of the fmall Ecliptic in 18 annual revolutions of the Earth, and 225 days over. And the Apogee-plate murt go once round forward, fo as its Index may go over all the Signs and Degrees of the fmall Ecliptic in eight years (or fo many annual revolutions of the Earth) and 312 days over.
\(N . B\). The ftring which goes round the Grooves \(X\) and \(N\) for the Moon's Motion mult crofs between thefe wheels; but all the reft of the ftrings
go in their refpective Grooves, \(I M, k O\), and \(L P\), without croffing.

Theromz. tarsum.

4co. The Cometarium. This curious Machine fhews the Motion of a Comet, or eccentric Body, moving round the Sun, defcribing equal areas in equal times, \(\$ 152\), and may be fo contrived as to fhew fuch a Motion for any Degree of Eccentricity. It was invented by the late Dr. DesaGULIERS.

The dark elliptical Groove round the letters

PLATE IV.

Fig. 1V. abcdefgbiklm is the Orbit of the Comet \(X\) : this Comet is carried round in the Groove, according to the order of letters, by the Wire \(W\) fixed in the Sun \(S\), and nides on the Wire as it approaches nearer to or recedes farther from the Sun, being neareft of all in the Perihelion \(a\), and fartheft in the Aphelion g. The areas a \(S b, b S c, c S d, \& z c\). or contents of thefefeveral Triangles, are all equal: and in every turn of the Winch \(N\) the Comet \(Y\) is carried over one of thefe areas: confequently in as much time as it moves from \(f\) to \(g\), or from \(g\) to \(h\), it moves from \(m\) to \(a\), or from \(a\) to \(b\); and fo of the reft, being quickeft of all at \(a\), and floweft at \(g\). Thus, the Comet's velocity in its Orbit continually decreafes from the Perihelion a to the Aphelion \(g\); and increafes in the fame proportion from \(g\) to \(a\).
The elliptic Orbit is divided into 12 equal Parts or Signs, with their refpective degrees, and fo is the Circle nopqristn, which reprefents a great Circle in the Heavens, and to which the Comet's motion is referred by a fmall knob on the point of the Wire \(W\). While the Comer moves from \(f\) to \(g\) in its Orbit, it appears to move only about five degrees in this Circle, as is fhewn by the fmall knob on the end of the Wire \(W\); but in the like time, as the Comet moves from \(m\) to \(a\), or from a to \(b\), it appears to defcribe the large fpace \(t n\) or \(n o\) in the Heavens, either of which fpaces contains 120 Degrees, or four Signs. Were the Eccentricity
of its Orbit greater, the greater fill would be the difference of its motion, and vice verfâ.

ABCDEFGHIǐLMA is a circular Orbit for Hhewing the equal Motion of a body round the Sun \(S\), defreribing equal Areas \(A S B, B S C, \& x c\). in equal times with thofe of the Body \(Y\) in its elliptical Orbit above-mentioned; but with this difference, that the circular motion defcribes the equal Arcs \(A B, B C, \& \times c\). in the fame equal times that the elliptical Motion defcribes the unequal Arcs \(a b, b c\), \&zc.

Now, fuppofe the two Bodies \(\Upsilon\) and I to ftart from the Points \(a\) and \(A\) at the fame moment of time; and each having gone round its refpective Orbit, to arrive at thefe Points again at the fame inftant, the Bedy \(\{\) will be forwarder in its Orbit than the Body 1 all the way from \(a\) to \(g\), and from \(A\) to \(G\); but I will be forwarder than \(Y\) through all the other half of the Orbit; and the difference is equal to the Equation of the Body \(Y\) in its Orbit. At the points \(a, A\), and \(g, G\), that is, in the Perihelion and Aphelion, they will be equal; and then the Equation vanifhes. This fliews why the tquation of a body moving in an elliptic Orbit, is added to the mean or fuppofed circular Motion from the Perihelion to the Aphelion, and fubtracted from the Aphelion to the Perihelion, in Bodies moving round the Sun, or from the Perigee to the Apogee, and from the Apogee to the Perigee in the Moon's Motion round the Earth, according to the Precepts in the 353 d Article; only we are to confider, that when Motion is turned into Time, it reverfes the titles in the Table of The Moon's elliptic Equation.

This Motion is performed in the following manner by the machine. \(A B C\) is a wooden bar (in the box containing the wheel-work) above which are the Wheels \(D\) and \(E\); and below it the ellipric Plates \(F F\) and \(G G\); each Plate being fixed on an Axis in one of its Focufes, at \(E\) and \(K\); and the Wheel \(E\) is fixed on the fame \(A\) is with the Plate

Pl.ATE IV. Fig. V.

FF. Thefe Plates have Grooves round their edges precifely of equal diameters to one another, and in thefe Grooves is the cat-gut ftring \(g g\), \(g g\) croffing between the Plates at \(b\). On \(H\) (the Axis of the handle or winch \(N\) in Fig. 4th), is an endlefs fcrew in Fig. 5, working in the Wheels \(D\) and \(E\), whofe numbers of teeth being equal, and fhould be equal to the number of lines \(a S, b S\), \(c S, \& c\). in Fig. 4, they turn round their Axes in equal times to one another, and to the Motion of the elliptic Plates. For, the Wheels \(D\) and \(E\) having equal numbers of teeth, the Plate \(F F\), being fixed on the fame Axis with the Wheel \(E\), and the Plate FF turning the equally big Plate \(G G\) by a cat-gur ftring round them both, they muft all go round their Axes in as many turns of the handle \(N\) as either of the Wheels has teeth.

It is eafy to fee, that the end \(b\) of the elliptical Plate \(F F\) being farther from its \(A\) xis \(E\) than the oppofite end \(i\) is, muft defrribe a Circle fo much the larger in proportion; and muft therefore move through fo much more face in the fame time; and for that reafon the end \(b\) moves fo much fafter than the end \(i\), although it goes no fooner round the Center \(E\). But then, the quick moving end \(b\) of the Plate \(F F\) leads about the fhort end \(b K\) of the Plate \(G G\) with the fame velocity; and the flow moving end \(i\) of the Plate FF coming half round, as to \(B\), muft then lead the long end \(k\) of the Plate GG as nowly abour: So that the elliptical Plate \(F F\) and its Axis \(E\) move uniformly and equally quick in every part of its revolution; but the elliptical Plate \(G G\), together with its Ax is \(K\), muft move very unequally in different parts of its revoJution: the difference being always inverfely as the diftance of any points of the Circumference of \(G G\) from its Axis at \(K\); or in other words, to inflance in two points, if the diflance \(K k\) be four, five, or fix times as great as the diftance \(K b\), the Point \(b\) will move in that pofition four, five, or fix
times as faft as the point \(k\) does: when the Plate \(G G\) has gone half round: and fo on for any other Eccentricity or Difference of the Diftances \(K k\) and \(K b\). The tooth \(i\) on the Plate \(F F\) falls in between the two teeth at \(k\) on the Plate \(G G\), by which means the revolution of the latter is fo adjufted to that of the former, that they can never vary from one another.

On the top of the Axis of the equally moving Wheel D, in Fig. \(5^{\text {th }}\), is the Sun \(S\) in Fig. \(4^{\text {th }}\); which Sun, by the Wire \(Z\) fixed to it, carries the Ball 1 round the Circle \(A B C D\), \&c. with an equable Motion, according to the order of the letters: and on the top of the Axis \(K\) of the unequally moving Ellipfis G G, in Fig. 5th, is the Sun S in Fig. 4th, carrying the Ball \(\Upsilon\) unequally round in the elliptical Groove \(a b c d, \& c c\). N.B. This elliptical Groove muft be precifely equal and fimilar to the verge of the Plate \(G G\), which is allo equal to that of \(F F\).

In this manner Machines may be made to fhew the true Motion of the Moon about the Earth, or of any Planet about the Sun; by making the elliptical Plates of the fame Eccentricities, in proportion to the Radius, as the Orbits of the Planets are whofe Motions they reprefent ; and fo, their different Equations, in different parts of their Orbits, may be made plain to the fight : and clearer ideas of thefe Motions and Equations will be acquired in half an hour, than could be gained from reading half a day about them.
401. The Improved Celestial Globe. On the im. the North Pole of the Axis, above the Hour-Circle, provecxis fixed an Arch \(M K H\) of \(23^{\frac{1}{2}}\) Degrees; and at Geoas. the end \(H\) is fixed an upright pin \(I I G\), which ftands directly over the North Pole of the Ecliptic, and perpendicular to that part of the furface of the Globe. On this pin are two moveable Collets at \(D\) and \(H\), to which are fixed the quadrantal Wires
\(N\) and \(O\), having two little Balls on theirends for the Sun and Moon, as in the Figure. The Collet \(D\) is fixed to the circular Plate \(F\), on which the \(29 \frac{1}{2}\) days of the Moon's age are engraven, beginning juft under the Sun's Wire \(N\) : and as this Wire is moved round the Globe, the Plate \(F\) turns round with it. There Wires are eafily turned, if the fcrew \(G\) be flackened; and when they are fet to their proper places, the fcrew ferves to fix them there; fo that when the Globe is turned, the Wires with the Sun and Moon may go round with it ; and thefe two little Balls rife and fet at the fame times, and on the fame points of the Horizon, for the day to which they are rectified, as the Sun and Moon do in the Heavens.

Becaufe the Moon keeps not her courle in the Ecliptic (as the Sun appears to do), but has a Declination of \(5 \frac{1}{3}\) Degrees, on each fide, from it in every Lunation, \(\S 317\), her Ball may be fcrewed as many degrees to either fide of the Ecliptic as her Latitude, or Declination from the Ecliptic, amounts to, at any given time : and for this purpofe \(S\) is a fmall piece of pafteboard, of which the curved edge at \(S\) is to be fet upon the Globe, at right Angles to the Ecliptic, and the dark line over \(S\) to ftand upright upon it. From this line, on the convex edge, are drawn the \(5 \frac{1}{3}\) Degrees of the Moon's Latitude on both fides of the Ecliptic; and when this piece is fet upright on the Globe, its graduated edge reaches to the Moon on the Wire \(O\), by which means fhe is eafily adjufted to her Latitude found by an Ephemeris.

The Horizon is fupported by two femicircular Arches, becaule Pillars would ftop the progrefs of the Balls, when they go below the Horizon in an oblique fphere.

To rectify this Globe. Elevate the Pole to the Latitude of the Place; then bring the Sun's place in the Ecliptic for the given day to the bra/s Meridian, and fet the Hour-Index to XII at noon,
that is, to the upper XII on the Hour-Circle, keeping the Globe in that fituation; flacken the fcrew \(G\), and fet the Sun directly over his place on the Meridian; which being done, fet the Moon's Wire under the number that expreffes her age for that day on the Plate \(F\), and fhe will then ftand over her place in the Ecliptic, and fhew what Conftellation fhe is in. Laftly, faften the fcrew \(G\), and laying the curved edge of the pafteboard \(S\) over the Ecliptic, below the Moon, adjuft the Moon to her Latitude over the graduated edge of the pafteboard; and the Globe will be rectified.
Having thus rectified the Globe, turn it round, Its ufe. and obferve on what points of the Horizon the Sun and Moon Balls rife and fet, for thefe agree with the points of the Compafs on which the Sun and Moon rife and fet in the Heavens on the given day: and the Hour-Index fhews the times of their rifing and fetting ; and likewife the time of the Moon's paffing over the Meridian.

This fimple Apparatus fhews all the varieties that can happen in the rifing and fetting of the Sun and Moon; and makes the forementioned Phenomena of the Harvett-Moon (Chap. xvi.) plain to the eye. It is alfo very ufeful in reading Lectures on the Globes, becaufe a large company can fee this Sun and Moon go round rifing above and fetting below the Horizon at different times, according to the feafons of the year; and making their appulfes to different fixed Stars. But in the ufual way, where there is only the places of the Sun and Moon in the Ecliptic to keep the eye upon, they are eafily loft fight of, unlefs they be covered with patches.
402. The Planetary Globes. In this Ma- The Plachine, \(\tau\) is a terreftrial Globe fixed on its Axis \(\begin{gathered}N E T A R Y \\ C \text { OBE. }\end{gathered}\) ftanding upright on the Pedeftal \(C D E\), on which PL. Viri, is an Hour-Circle, having its Index fixed on the Axis, which turns fomewhat tightly in the Pedeftal
fo that the Globe may not be liable to thake; to prevent which, the Pedeftal is about two Inches thick, and the Axis goes quite through it, bearing on a fhoulder. The Globe is hung in a graduated brazen Meridian, much in the ufual way; and the thin Plate \(N, N E, E\) is a moveable Horizon, graduated round the outer edge, for fhewing the Bearings and Amplitudes of the Sun, Moon, and Planets. The brazen Meridian is grooved round the outer edge; and in this Groove is a nender femicircle of brafs, the ends of which are fixed to the Horizon in its North and South Points: this femicircle flides in the Groove as the Horizon is moved in rectifying it for different Latitudes. To the middle of the femi-circle is fixed a Pin, which always keeps in the Zenith of the Horizon, and on this Pin, the Quadrant of Altitude \(q\) turns; the lower end of which, in all pofitions, touches the Horizon as it is moved round the fame. This Quadrant is divided into 90 Degrees from the Horizon to the Zenithal Pin on which it is turned, at 90. The great flat Circle or Plate \(A B\) is the Ecliptic, on the outer edge of which the Signs and Degrees are laid down; and every fifth Degree is drawn through the reft of the furface of this Plate towards its Center. On this Plate are feven Grooves, to which feven little Balls are adjufted by niding Wires, fo that they are eafily moved in the Grooves, without danger of ftarting out of them. The Ball next the terreftrial Globe is the Moon, the next without it is Mercury, the next Venus, the next the Sun, then Mars; then Jupiter, and laftly Saturn; and in order to know them, they are feperatelyftampt with the following Characters; , ช, ㅇ, \(\odot, \delta, 4, \mathbf{7}\). This Plate or Ecliptic is fupported by four ftrong Wires, having their lower ends fixed into the Pedeftal, at \(C, D\), and \(E\), the fourth being hid by the Globe. The Ecliptic is inclined 23 \(\frac{1}{2}\) Degrees to the Pedeftal, and is there-
fore properly inclined to the Axis of the Globe which ftands upright on the Pedeftal.

To rectify this Macbine. Set the Sun, and all the Planetary Balls, to their geocentric places in the Ecliptic for any given time, by an Ephemeris; then fet the North Point of the Horizon to the Latitude of your place on the brazen Meridian, and the Quadrant of Altitude to the South Point of the Horizon; which done, turn the Globe with its Furniture till the Quadrant of Altitude comes right againft the Sun, viz. to his place in the Ecliptic; and keeping it there, fet the Hour-Index to the XII next the letter \(C\); and the Machine will be rectified, not only for the following Problems, but for feveral others, which the Artift may eafily find out.

> PROBLEM I.

To find the Amplitudes, Meridian Altitudes, and times of rijing, culminating, and Setting, of the Sun, Moon, and Planets.

Tùrn the Globe round eaftward, or according Its ufe. to the order of the Signs; and when the eaftern edge of the Horizon comes right againft the Sun, Moon, or any Planet, the Hour-Index will fhew the time of its rifing; and the inner edge of the Ecliptic will cut its rifing Amplitude in the Horizon. Turn on, and when the Quadrant.of Altitude comes right againft the Sun, Moon, or any Planer, the Ecliptic will cut their Meridian Altitudes on the Quadrant, and the Hour-Index will fhew the times of their coming to the Meridian. Continue turning, and when the W eftern edge of the Horizon comes right againft the Sun, Moon, or any Planet, their fetting A mplitudes will be cut on the. Horizon by the Ecliptic; and the times of their ferting will be fhewn by the Index on the Hour-Circle.

\author{
PROBLEM II.
}

To find the Altitude and Azimutb of the Sun, Moon, and Planets, at any time of their being above the Horizon.

Turn the Globe till the Index comes to the given time in the Hour-Circle; then keep the Globe fteady, and moving the Quadrant of Altitude to each Planet refpectively, the edge of the Ecliptic will cut the Planet's mean Altitude on the Quadrant, and the Quadrant will cut the Planet's Azimuth, or Point of bearing on the Horizon.

> PROBLEM III.

The Sun's Altitude being given at any time eitber before or after Noon, to find the Hour of the Day, and the Variation of the Compafs, in any known Latilude.

With one hand hold the edge of the Quadrant right againft the Sun ; and, with the other hand, turn the Globe weftward, if it be in the forenoon, or eaftward if it be in the afternoon, until the Sun's place at the inner edge of the Ecliptic cuts the Quadrant in the Sun's obferved Altitude; and then the Hour-Index will point out the time of the day, and the Quadrant will cut the true Azimuth, or Bearing of the Sun for that time: the difference between which, and the Bearing fhewn by the Azimuth Compafs, is the Variation of the Compafs in that place of the Earth.

The Tra-jectoriUs Lu. NARE.
403. The Trajectorium Lunare. This Machine is for delineating the Paths of the Earth and Moon, fhewing what fort of Curves they make in the ethereal regions; and was juft mentioned in
the 266th Article. \(S\) is the Sun, and \(E\) the Earth, whofe Centers are 81 Inches diftant from each

Plate vil. Fig. V . other; every Inch anfwering to a Million of Miles, §47. \(M\) is the Moon, whofe Center is \(\frac{24}{T \circ 0}\) parts of an Inch from the Earth's in this Machine, this being in juft proportion to the Moon's diftance from the Earth, \(\$ 52\). \(A A\) is a Bar of Wood, to be moved by hand round the Axis \(g\), which is fixed in the Wheel \(X\). The Circumference of this Wheel is to the Circumference of the fmall Wheel \(L\) (below the other end of the Bar) as \(365 \frac{\pi}{4}\) days is to \(29 \frac{1}{2}\); or as a Year is to a Lunation. The Wheels are grooved round their edges, and in the Grooves is the cat-gut ftring \(G G\) croffing between the Wheels at \(X\). On the Axis of the Wheel \(L\). is the Index \(F\); in which is fixed the Moon's Axis \(M\) for carrying her round the Earth \(E\) (fixed on the Axis of the Wheel \(L\)) in the time that the Index goes round a Circle of \(29 \frac{\pi}{2}\) equal parts, which are the Days of the Moon's age. The Wheel \(\Upsilon\) has the Months and Days of the year all round its Limb; and in the \(\operatorname{Bar} A A\) is fixed the Index \(I\), which points out the Days of the Months anfwering to the Days of the Moon's age, fhewn by the Index \(F\), in the Circle of \(29 \frac{\frac{\pi}{2}}{2}\) equal parts at the other end of the Bar. On the A xis of the Wheel \(L\) is put the piece \(D\), below the Cock \(C\), in which this Axis turns round; and in \(D\) are put the Pencils \(e\) and \(m\), directly under the Earth \(E\) and Moon \(M\); fo that \(m\) is carried round \(e\), as \(M\) is round \(E\).
Lay the Machine on an even floor, preffing gently Its ufe. on the Wheel \(\Upsilon\), to caufe its fpiked feet (of which two appear at \(P\) and \(P\), the third being fuppofed to be hid from fight by the Wheel) to enter a little into the Floor, to fecure the Wheel from turning. Then lay a paper about four feet long under the Pencils \(e\) and \(m\), crofs-wife to the Bar: which done, move the Bar nowly round the A xis \(g\) of the Wheel \(r\); and, as the Earth \(E\) goes round che Sun \(S\), the Moon \(M\) will go round the Earth with a duly proEe4 portioned
portioned velocity; and the friction Wheel \(W\) running on the floor, will keep the Bar from bearing too heavily on the Pencils \(e\) and \(m\), which will delineate the Paths of the Earth and Moon, as in Fig. 2d, already defcribed at large, § \(266,267\). As the Index \(I\) points out the Days of the Months, the Index \(F\) fhews the Moon's age on thefe Days, in the Circle of \(29 \frac{1}{2}\) equal parts. And as this laft Index points to the different days in its Circle, the like numeral Figures may be fet to thofe parts of the curves of the Earth's Path and Moon's, where the Pencils \(e\) and \(m\) are at thofe times refpectively, to thew the Places of the Earth and Moon. If the Pencil \(e\) be pufhed a very little off, as if from the Pencil \(m\), to about \(\frac{1}{40}\) part of their diftance, and the Pencil \(m\) pufhed as much toward \(e\) to bring them to the fame diftance again, though not to the fame points of fpace; then, as \(m\) goes round \(e, e\) will go as it were round the Center of Gravity between the Earth \(e\) and Moon m, §293: but this motion will not fenfibly alter the Figure of the Earth's Path or the Moon's.

If a \(\operatorname{Pin}\), as \(p\), be put through the Pencil m, with its head toward that of the Pin \(q\) in the Pencil \(e\), the head of the former will always keep to the head of the latter as \(m\) goes round \(e\), and fhews that the fame fide of the Moon is continually turned to the Earth. But the Pin P, which may be confidered as an equatorial Diameter of the Moon, will turn quite round the point \(m\), making all palfible Angles with the Line of its Progrefs, or Line of the Moon's Path. This is an ocular proof of the Moon's turning round her A sis.

The Tide- 404. The Tide-Dial. The outfide parts of Dial.

PLATE IX. Fig. Yil. this Machine confift of, I. An eigit-ficled Box, on the top of which at the corners is fhewn the Phafes of the Moon at the Octants, Quarters, and Full. Within thefe is a Circle of \(29^{\frac{1}{2}}\) equal parts, which are the days of the Moon's age accounted from the Sun at New Moon, round to the Sun agrain. Within
this Circle is one of 24 hours divided into their refpective Halves and Quarters. 2. A moving elliptical Plate, painted Blue, to reprefent the rifing of the Tides under and oppofite to the Moon; and has the words, High Water, Tide falling, Low Weter, Tide rifing, marked upon it. To one end of this Plate is fixed the Moon \(M\) by the Wire W, and goes along with it. 3. Above this elliptical Plate is a round one, with the points of the Compals upon it, and alfothe names of above 200 places in the large Machine (but only 32 in the Figure, to avoid confufion) fet over thofe Points on which the Moon bears when fhe raifes the Tides to the greatelt heights at thefe Places twice in every lunar day : and to the North and South Points of this Plate are fixed two Indexes, \(I\) and \(K\), which fhew the times of High Water, in the Hour-Circle, at all thefe places. 4. Below the elliptical Plate are four fmall Plates, two of which project out from below its ends at New and Full Moon; and fo, by lengthening the Ellipfe, fhew the Spring Tides, which are then raifed to the greateft heights by the united attractions of the Sun and Moon, §302. The its ure. other two of thefe fnall Plates appear at low water when the Moon is in her Quadratures, or at the fides of the elliptical Plate, to thew the Neap-Tides; the Sun and Moon then acting crofs-wife to each other. When any two of thefe fmall Plates appear, the other two are hid; and when the Moon is in her Octants, they all difappear, there being neither Spring nor Neap-Tides at thofe times. Within the Box are a few Wheels for performing thefe Motions by the Handle or Winch \(H\).

Turn the Handle until the Moon \(M\) comes to any given day of her age in the Circle of \(29 \frac{2}{2}\) equal parts, and the Moon's Wire \(W\) will cut the time of her coming to the Meridian on that day, in the Hour-Circle; the XII under the Sun being Midday, and the oppofite XII Midnight; then looking for the name of any given place on the round Plate
(which makes \(29 \frac{x}{2}\) rotations while the Moon \(M\) makes only one revolution from the Sun to the Sun again) turn the Handle till that place comes to the word Higb Water under the Moon, and the Index which falls among the Forenoon Hours will Shew the time of High Water at that place in the Forenoon of the given day: then turn the Plate half round, till the fame place comes to the oppofite High Water Mark, and the Index will hhew the time of High Water in the Afternoon at that place. And thus, as all the different places come fucceffively under and oppofite to the Moon, the Indexes fhew the times of High Water at them in both parts of the day : and when the fame places come to the Low Water Marks, the Indexes fhew the times of Low Water. For about three days before and after the times of New and Full Moon, the two fmall Plates come out a little way from below the High Water Marks on the elliptical Plate, to fhew that the Tides rife ftill higher about thefe times: and about the Quarters, the other two Plates come out a little from under the Low Water Marks toward the Sun and on the oppofite fide, fhewing that the Tides of Flood rife not then fo high, nor do the Tides of Ebb fall fo low, as at other times.

By pulling the Handle a little way outward, it is difengaged from the Wheel-work, and then the upper Plate may be turned round quickly by hand; fo as the Moon may be brought to any given day of her age in about a quarter of a minute: and by pufhing in the Handle, it takes hold of the Wheelwork again.

The infide work defcribed.

PLATE IX. Fig. VIH.

On \(d B\), the Axis of the Handle \(H\), is an endlefs Screw \(C\), which turns the wheel \(F E D\) of 24 teeth round in 24 revolutions of the Handle : this Wheel turns another, \(O N G\), of 43 teeth, and on its Axis is the Pinion \(P Q\) of tour leaves, which turns the Wheel \(L K I\) of 59 teeth round in \(29 \frac{1}{2}\) turnings or rotations of the Wheel FED, or in 708 revolu-

tions of the Handle, which is the number of Hours in a fynodical revolution of the Moon. The round Plate with the names of Places upon it is fixed on the Axis of the Wheel FED; and the Elliptical or Tide-Plate with the Moon fixed to it is upon the Axis of the Wheel \(L K I\); confequently, the former makes \(29 \frac{1}{2}\) revolutions in the time that the latter makes one. The whole Wheel \(F E D\), with the endlefs Screw \(C\), and dotted part of the Axis of the Handle \(A B\), together with the dotted part of the Wheel \(O N G\), lie hid below the large Wheel \(L K I\).

Fig. IXth reprefents the under fide of the E1liptical or Tide-Plate \(a b c d\), with the four fmall Plates \(A B C D, E F G H, I K L M, N O P Q\) upon it: each of which has two lits, as \(\mathcal{T} \mathcal{T}, S S, R R\), UU, niding on two Pins, as \(n n\), fixed in the Elliptical Plate. In the four fmall Plates are fixed four Pins, at \(W, X, \Upsilon\), and \(Z\); all of which work in an Elliptic Groove 0000 on the cover of the Box below the Elliptical Plate; the longeft Axis of this Groove being in a right line with the Sun and Full Moon. Confequently, when the Moon is in Conjunction or Oppofition, the Pins \(W\) and \(X\) thruft out the Plates \(A B C D\) and \(I K L M\) a little beyond the ends of the Elliptical Plate at \(d\) and \(b\), to \(f\) and \(e\); while the Pins \(Y\) and \(Z\) draw in the Plates \(E F G H\) and \(N O P\) Q quite under the Elliptic Plate to \(g\) and \(b\). But, when the Moon comes to her firft or third Quarter, the Elliptic Plate lies acrofs the fixed Elliptic Groove in which the Pins work; and therefore the end Plates \(A B C D\) and \(I K L M\) are drawn in below the great Plate, and the other two Plates \(E F G H\) and \(N O P Q\) are thruft out beyond it to \(a\) and \(c\). When the Moon is in her Octants, the Pins \(V, X, X, Z\) are in the parts \(0,0,0,0\) of the Elliptic Groove, which parts are at a mean between the greateft and leaft dirtances from the Center \(q\), and then all the four fmall Plates difappear, being hid by the great one.
405. The

The E-CIPPAREON. YL. XIII.
405. The Eclipsareon. This piece of Mechanifm exhibits the Time, Quantity, Duration, and Progrefs of folar Eclipfes, at all parts of the Earth.

The principal parts of this Machine are, I. A terreftial Globe \(A\) turned round its \(A\) xis \(B\) by the Handle or Winch \(M\); the Axis \(B\) inclines \(23 \frac{x}{2}\) Degrees, and has an Index which goes round the Hour-Circle \(D\) in each rotation of the Globe. 2. A circular Plate \(E\), on the Limb of which the Months and Days of the year are inferted. This Plate fupports the Globe, and gives its Axis the fame pofition to the Sun, or to a Candle properly placed, that the Earth's Axis has to the Sun upon any day of the year, \(\$ 33^{8}\), by turning the Plate till the given Day of the Month comes to the fixed Pointer, or Annual Index G. 3. A crooked Wire \(F\), which points toward the middle of the Earth's enlightened Difc at all times, and fhews to what place of the Earth the Sun is vertical at any given time. 4. A Penumbra, or thin circular Plate of brafs \(I\) divided into 12 Digits by 12 concentric Circles, which reprefent a Section of the Moon's Penumbra, and is proportioned to the fize of the Globe; fo that the fhadow of this Plate, formed by the Sun, or a Candle placed at a convenient diftance; with its rays tranfmitted through a convex Lens to make them fall parallel on the Globe, covers exactly all thofe places upon it that the Moon's Shadow and Penumbra do on the Earth: fo that the Phenomena of any folar Eclipfe may be fhewn by this Machine with Candle-light almoft as well as by the light of the Sun. 5. An upright frame HHHH, on the Sides of which are Scales of the Moon's Latitude or Declination from the Ecliptic. To thefe Scales are fitted two Sliders \(K\) and \(K\), with Indexes for adjufting the Penumbra's Center to the Moon's Latitude, as it is North or South Afcending or Defcending. 6. A Solar Horizon \(C\), dividing the enlightened Hemifphere of
she Globe from that which is in the dark at any given time, and fhewing at what places the general Eclipfe begins and ends with the rifing or fetting Sun. 7. A handle \(M\), which turns the Globe round its Axis by wheel-work, and at the fame time moves the Penumbra acrofs the frame by threads over the Pulleys \(L, L, L\), with a velocity duly proportioned to that of the Moon's fhadow over the Earth, as the Earth turns on its Axis. And as the Moon's Motion is quicker or flower, according to her different diftances from the Earth, the Penumbral Motion is eafily regulated in the Machine by changing one of the Pulleys.

To rectify the Macbine for ufe. The true time of To reaify New Moon and her Latitude being known by the \({ }^{\text {it- }}\) foregoing Precepts, § 353, et Jeq. if her Latitude exceeds the number of minutes or divifions on the Scales (which are on the fide of the frame hid from view in the figure of the Machine) there can be no Eclipfe of the Sun at that conjunction; but if it does not, the Sun will be eclipfed to fome places of the Earth; and, to fhew the times and various appearances of the Eclipfe at thofe places, procecd in order as follows.

Torecify the Machine for performing by the light of the Sun. I. Move the Sliders \(K K\) till their Indexes point to the Moon's Latitude on the Scales, as it is North or South Afcending or Defcending, at that time. 2. Turn the Month-Plate \(E\) till the day of the given New Moon comes to the Annual Index \(G\). 3. Unferew the Collar \(N\) a little on the Axis of the Handle, to loofen the contiguous focket on which the threads that move the Penumbra are wound; and fet the Penumbra by hand cill its Center comes to the perpendicular thread in the middle of the frame; which thread reprefents the Axis of the Eoliptic. 4. Turn the Handle till the Meridian of London on the Globe comes juft under the point of the crooked Wire \(F\); then top, and turn the Hour Circle \(D\) by Hand till Xll at Noon
comes to its Index, and fet the Penumbra's middle to the thread. 5. Turn the Handle till the HourIndex points to the time of New Moon in the Circle \(D\); and holding it there, fcrew faft the Collar \(N\). Laftly, elevate the Machine till the Sun fhines throughthe Sight-Holes in the fmall upright Plates \(O, O\) on the Pedeftal; and the whole Machine will be rectified.

To reext ify the Macbine for 乃erwing by Candle-ligbt. Proceed in every refpect as above, except in that part of the laft paragraph where the Sun is mentioned; inftead of which place a Candle before the Machine, about four yards from it, foas the fhadow of interfection of the crofs threads in the middle of the frame may fall precifely on that part of the Globe to which the crooked wire \(F\) points : then, with a pair of compaffes, take the diftance between the Penumbra's Center and interfection of the threads ; and equal tothat diftance fet the Candie higher or lower, as the Penumbra's Center is above or below the faid interfection. Laftly, place a large convex Lens between the Machine and Candle, fo as the Candle may be in the Focus of the Lens, and then the Rays will fall parallel, and caft a ftrong light on the Globe.

Thefe things being done (and they may be done fooner than they can be expreffed) turn the Handle backward, until the Penumbra almoft touches the fide \(H F\) of the frame; then turning gradually forward, obferve the following Phænomena. 1. Where the eaftern edge of the fhadow of the Penumbral Plate I firft touches the Globe at the folar Horizon, thofe who inhabit the correfponding part of the Earth fee the Eclipfe begin on the uppermoft edge of the Sun, juft at the time of its rifing. 2 . In that place where the Penumbra's Center firft touches the Globe, the inhabitants have the Sun rifing upon them centrally eclipfed. 3. When the whole Penumbra juft falls upon the Globe, its weftern edge at the folar Horizon touches and leaves the place where the Eclipfe ends
at Sun-rife on the lowermof edge, Continue turning; and 4. The crofs lines in the Center of the Penumbra will go over all thofe places on the Globe where the Sun is centrally eclipfed. 5. When the eaftern edge of the fhadow touches any place of the Globe, the Eclipfe begins there ; when the verticle line in the Penumbra comes to any place, then is the greateft obfcuration at that place; and when the weftern edge of the Penumbra leaves the place, the Eclipfe ends there; the times of all which are fhewn on the Hour-Circle; and from the beginning to the end, the Shadows of the concentric penumbral Circles fhew the numbers of Digits eclipfed at all the intermediate times. 6. When the eaftern edge of the Penumbra leaves the Globe at the folar Horizon \(C\), the inhabitants fee the Sun beginning to be eclipfed on his lowermoft edge at its fetting. 7. Where the Penumbra's Center leaves the Globe, the inhabitants fee the Sun fet centrally eclipfed. And laftly, where the Penumbra is wholly departing from the Globe, the inhabitants fee the Ecliple ending on the uppermoft part of the Sun's edge, at the time of its difappearing in the Horizon.
' N. B. If any given day of the year on the Plate \(E\) be fet to the Annual Index \(G\), and the Handle turned till the Meridian of any place comes under the point of the crooked Wire, and then the HourCircle \(D\) fet by the hand till XII comes to its \(I_{n}\) dex ; in turning the Globe round by the Handle, when the faid place touches the eaftern edge of the Hoop or folar Horizon \(C\), the Index fhews the time of Sun-fetting at that place; and when the place is juft coming out from below the other edge of the Hoop \(C\), the Index fhews the time when the evening Twilight ends to it. When the place has gone through the dark part \(A\), and comes about fo as to touch under the back of the Hoop \(C\), on
the other fide, the Index fhews the time when the Morning Twilight begins; and when the fame place is jutt coming out from below the edge of the Hoop next the frame, the Index points out the time of Sun-rifing. And thus, the times of Sun-rifing and fetting are fhewn at all places in one rotation of the Globe, for any given day of the year: and the point of the crooked Wire F fhews all the places over which the Sun paffes vertically on that day.

\section*{A}

\section*{PLA I N METHO D OF FINDINCTHE}

DISTANCES of all the PLANETS from the SUN,

> By The

TRANSIT of VENUS over the SUN's DISC, in the Year 176 r.

TO WHICH IS SUBJOINED,
An Account of Mr. HORROX's Obfervations of the Transit of Venus in the Year \(1 \sigma_{39}\).
\[
A N D \text { A } 工=0 \text {, }
\]

Of the DISTANCES of all the PLANETS from the SUN, as deduced from Obsrrvations of the Transit. in the Year 176 .

\title{
\(\begin{array}{llllll}M & \text { E } & \text { T } & H & O & D\end{array}\)
} OF FINDING THE

DISTANCES of the PLANETS from the \(S U N\).

\section*{C H A P T E R XXIII.}
\[
\mathrm{A} R \mathrm{~T} \mathrm{I} \mathrm{C} \mathrm{~L} \mathrm{E} \text {. }
\]

Concerning Parallaxes, and their Ufe in general.
1. \(\mathrm{HHE}^{*}\) approaching Tranfit of Venus over the Sun has juftly engaged the attention of Aftronomers, as it is a phenomenon feldom feen, and as the parallaxes of the Sun and Planets, and their diftances from one another, may be found with greater accuracy by it, than by any other method yet known.
2. The parallax of the Sun, Moon, or any planer, is the diftance between its true and apparent place in the heavens. The true place of any celeftial object, referred to the ftarry heaven, is that in which it would appear if feen from the center of the Earth; the apparent place is that in which it appears as feen from the Earth's furface.

To explain this, let \(A B D H\) be the Earth (Fig.I. of Plate XIV.), Cits center, \(M\) the Moon, and \(Z X R\) an arc of the ftarry heaven. To an obferver at \(C\) (fuppofing the Earth to be tranfparent) the Moon \(M\) will appear at \(U\), which is her true place referred to the farry firmament: but at the
- The whole of this Differtation was publifhed in the beginning of the year 1761, before the Time of the Tranfit, except the 7 th and 8 th Articles, which are added fince that time.
fame inftant, to an obferver at \(A\) fhe will appear at \(u\), below her true place among the flars.-The angle \(A M C\) is called the Moon's parallax, and is equal to the oppofite angle \(U M u\), whofe meafure is the celeftial arc \(U u\). - The whole earth is but a point if compared with its diftance from the fixed ftars, and therefore we confider the ftars as having no parallax at all.
3. The nearer the object is to the horizon, the greater is its parallax ; the nearer it is to the zenith, the lefs. In the horizon it is greatef of all; in the zenith it is nothing. - Thus let \(A L t\) be the fenfible horizon of an obferver at \(A\); to him the Moon at \(L\) is in the horizon, and her parallax is the angle \(A L C\), under which the Earth's femidiameter \(A C\) appears as feen from her. This angle is called the Moon's horizontal parallax, and is equal to the oppofite angle \(\tau L t\), whofe meafure is the are \(\mathcal{T}\) t in the farry heaven. As the Moon rifes higher and higher to the points \(M, N, O, P\), in her diurnal courfe, the parallactic angles \(U M u\), \(X N x, Y \circ y\) diminifh, and fo do the arcs \(U u, X x\), \(\gamma_{y}\), which are their meafures, until the Moon comes to \(P\); and then the appears in the zenith \(Z\) withour any parallax, her place being the fame whether it be feen from \(A\) on the Earth's furface, or from \(C\) its center.
4. If the obferver at \(A\) could take the true meafure or quantity of the parallactic angle \(A L C\), he might by that means find the Moon's diftance from the çenter of the Earth. For, in the plain triangle \(L A C\), the fide \(A C\), which is the Earth's femidiameter, the angle \(A L C\), which is the Moon's horizontal parallax, and the right angle \(C A L\), would be given. 'Therefore, by trigonometry, as the tangent of the parallactic angle \(A L C\) is to radius, fo is the Earth's femidiameter \(A C\) to the Moon's diftance CL from the Earth's center C.But becaufe we confider the Earth's femidiameter as unity, and the logarithm of unity is nothing, fub-
traft the logarithmic tangent of the angle \(A L C\) from radius, and the remainder will be the logarithm of \(C L\), and its correfponding number is the number of femidiameters of the Earth which the Moon is diftant from the Earth's center.-Thus fuppofing the angle \(A L C\) of the Moon's horizontal parallax be \(57^{\prime} 18^{\prime \prime}\).

From the radius - 10.0000000
Subtract the tangent of \(57^{\prime \prime} 18^{\prime \prime \prime} 8.2219207\)
And there will remain - 1.7780793 ; which is the logarithm of 59.99 , the number of femidiameters of the Earth which are equal to the Moon's diftance from the Earth's center. Then, 59.99 being multiplied by 3985 , the number of miles contained in the Earth's femidiameter, will give 239060 miles for the Moon's diftance from the center of the Earth, by this parallax.
5. But the true quantity of the Moon's horizontal parallax cannot be accurately determined by obferving the Moon in the horizon, on account of the inconltancy of the horizontal refractions, which always vary according to the ftate of the atmofphere; and, at a mean rate, elevate the Moon's apparent place near the horizon half as much as her parallax depreffes it. And therefore, to have her parallax more accurate, Aftronomers have thought of the following method, which feems to be a very good one, but hath not yet been put in practice.

Let two obfervers be placed under the fame meridian, one in the northern hemifphere, and the other in the fouthern, at fuch a diffance from each other, that the arc of the celeftial meridian included between their two zeniths may be at leaft 80 or 90 degrees. Let each obferver take the diftance of the Moon's center from his zenith, by means of an exceeding good inftrument, at the moment of her paffing the meridian: add thele two zenith-diftances of the Moon together, and
their excefs above the diftance between the two zeniths will be the diftance between the two apparent places of the Mcon. Then, as the fum of the natural fines of the two zenith-dittances of the Moon is to radius, fo is the diftance between her two apparent places to her horizontal parallax: which being found, her diftance from the Earth's center may be found by the analogy mentioned in
4.

Thus, in Fig. 2. let VECQ be the Earth, \(M\) the Moon, and \(Z b a z\) an arc of the crleftial meridian. Let \(V\) be Vienna, whofe latitude \(E V\) is \(48^{\circ} 20^{\prime}\) north; and \(C\) the Cape of Good Hope, whofe latitude EC is \(34^{\circ} 30^{\prime}\) fouth : both which latitudes we fuppofe to be accurately determined before-hand by the obfervers. As thefe two places are on the fame meridian \(n V E C s\), and in different hemifpheres, the fum of their latitudes \(82^{\circ} 50^{\prime}\) is their diftance from each other. \(Z\) is the zenith of Vienna, and \(z\) the zenith of the Cape of Good Hope; which two zeniths are alfo \(32^{\circ} 50^{\prime}\) dittant from each other, in the common celeftial meridian \(Z z\). To the obferver at Vienna, the Moon's center will appear at \(a\) in the celeftial meridian; and at the fame inftant, to the obferver at the Cape, it will appear at \(b\). Now fuppofe the Moor's diftance \(Z\) a from the zenith of Vienna to be \(3^{8^{\circ}} 1^{\prime} 53^{\prime \prime}\); and her diffance \(z b\) from the zenich of the Cape of Good Hope to be \(46^{\circ}\) \(4^{\prime} 41^{\prime \prime}\) : the fum of thefe two zenith-diftances \((Z a+z b)\) is \(84^{\circ} 6^{\prime} 34^{\prime \prime}\), from which fuberact \(82^{\circ} 50^{\prime}\), the diftance \(Z z\) between the zenirhs of there two places, and there will remain \(1^{\circ} 16^{\prime} 34^{\prime \prime}\) for the \(\operatorname{arc} b a\), or diftance between the two apparent places of the Moon's center, as Feen from \(V\) and from \(C\). Then, fuppofing the tabular radius to be 10000000 , the natural fine of \(3^{8^{\circ}} 1^{\prime} 53^{\prime \prime}\) (the arc \(Z_{i \prime}\) a) is 6160816 , and the natural fine of \(46^{\circ} 4^{\prime}\) \(4 i^{\prime \prime}\) (the arc \(Z 6\)) is 7202821 ; the fum of borh thefe fines is 13363637 . Say, therefore, As 13363637
is to 10000000 , fo is \(1^{\circ} 16^{\prime} 34^{\prime \prime}\), to \(57^{\prime} 18^{\prime \prime \prime}\), which is the Moon's horizontal parallax.

If the two places of obfervation be not exactly under the fame meridian, their difference of longitude mutt be accurately taken, that proper allowance may be made for the Moon's declination while She is paffing from the meridian of the one to the meridian of the other.
6. The Earth's diameter, as feen from the Moon, fubtends an angle of double the Moon's horizontal parallax; which being fuppofed (as above) to be \(57^{\prime} 18^{\prime \prime}\), or \(343^{\prime \prime \prime}\), the Earth's diameter mult be \(1^{0} 54^{\prime} 36^{\prime \prime}\), or \(6376^{\prime \prime}\). When the Moon's horizontal parallax (which is variable on account of the eccentricity of her orbit) is \(57^{\prime} 18^{\prime \prime}\), her diameter fubtends an angle \(31^{\prime} 2^{\prime \prime}\), or \(1862^{\prime \prime}\) : therefore the Earth's diameter is to the Moon's diameter, as 6876 is to 1862 ; that is, as 3.6 g is to I .

And fince the relative bulks of fpherical bodies are as the cubes of their diameters, the Earth's bulk is to the Moon's bulk, as 49.4 is to I .
7. The parallax, and confequently the diftance and bulk of any primary planet, might be found in the above manner, if the planet was near enough to the Earth, to make the difference of its two apparent places fufficiently fenfible: but the neareft planet is too remote for the accuracy required. In order therefore to determine the diftances and relative bulks of the planets with any tolerable degree of precifion, we mult have recourfe to a method lefs liable to error: and this the approaching tranfit of Venus over the Sun's difc will afford us.
8. From the time of any inferior conjunction of the Sun and Venus to the next, is 583 days 22 hours 7 minutes. And, if the plane of Venus's orbit were coilncident with the plane of the ecliptic, fhe would pafs directly between the Earth and the Sun at each inferior conjunction, and would then appear like a dark round fpot on the Sun for about

7 hours

7 hours and 3 quarters. But Venus's orbit (like the Moon's) only interfects the ecliptic in two oppofite points, called its Nodes. And therefore one half of it is on the north fide of the ecliptic, and the other on the fouth: on which account, Venus can never be feen on the Sun, but at thofe inferior conjunctions which happen in or near the nodes of her orbit. At all the other conjunctions, the either paffes above or below the Sun; and her dark fide being then toward the Earth, She is invifible. The laft time when this planet was feen like a fpot on the Sun, was on the 24 th of November, Old Stile, in the year 1639.

\section*{A R T I CLE II.}

Shewing bow to find the borizontal parallax of Vinus by obfervation, and from thence, by analogy, the parallax and diftance of the Sun, and of all the Planets from bim.
9. In Fig, 4, of Plate XIV. let \(D B A\) be the Earth, \(V\) Venus, and \(\mathcal{T} S R\) the eaftern limb of the Sun. To an obferver at \(B\), the point \(t\) of that limb will be on the meridian, its place referred to the heaven will be at \(E\), and Venus will appear juft within it at \(S\). But, at the fame inftant, to an obferver at \(A\), Venus is eaft of the Sun, in the right line \(A V F\); the point \(t\) of the Sun's limb appears at \(e\) in the heaven, and if Venus were then vifible, the would appear at \(F\). The angle \(C V A\) is the horizontal parallax of Venus, which we feek; and is equal to the oppofite angle \(F V E\), whore meafure is the arc \(F E . A S C\) is the Sun's horizontal parallax, equal to the oppofite angle eSE, whofe meafure is the arc \(e E\) : and \(F A e\) (the fame as \(V A_{\text {I }}\)) is Venus's horizontal parallax from the Sun, which may be found by obferving how much later in abfolute time her cotal ingrefs on the Sun is, as feen from \(A\), than as feen from \(h\), which is the time
time the takes to move from \(V\) to \(v\) in her orbit OVv.
10. It appears by the tables of Venus's motion and the Sun's, that at the time of her enfuing tranfit, fhe will move 4 ' of a degree on the Sun's difc in 60 minutes of time; and therefore the will move \(4^{\prime \prime}\) of a degree in one minute of time.

Now let us fuppofe, that \(A\) is \(90^{\circ}\) weft of \(B\), fo that when it is noon at \(B\), it will be VI in the morning at \(A\); that the total ingrefs as feen from \(B\) is at I minute paft XII. but that as feen from \(A\) it is at 7 minutes 30 feconds paft VI: deduet 6 hours for the difference of meridians of \(A\) and \(B\), and the remainder will be 6 minutes 30 feconds for the time by which the total ingrefs of Venus on the Sun at \(S\) is later as feen from \(A\) than as feen from \(B\) : which time being converted into parts of a degree is \(26^{\prime \prime}\), or the arc \(F e\) of Venus's horizontal parallax from the Sun: for, as I minute of time is to 4 feconds of a degree, fo is \(6 \frac{1}{2}\) minutes of time to 26 feconds of a degree.
11. The times in which the planets perform their annual revolutions about the Sun, are already known by obfervation.-From thefe times, and the univerfal power of gravity by which the planets are retained in their orbits, it is demonftrable, that if the Earth's mean diftance from the Sun be divided into rocooo equal parts, Mercury's mean diftance from the Sun muft be equal to 38710 of thefe parts-Venus's mean diftance from the Sun, 107233.3 -Mars's mean diftance, 152369 -Jupiter's, 520096 - and Saturn's, 954006 . Therefore, when the number of miles contained in the mean diftance of any planet from the Sun is known, we can, by the fe proportions, find the mean diftance in miles of all the reft.
12. At the time of the enfuing tranfit, the Earth's diftance from the Sun will be 1015 (the mean diftance being here confidered as 1000), and Venus's diftancé from the Sun will be \(j^{26}\) (the
mean diftance being confidered as 723), which differences from the mean diftances arife from the elliptical figure of the planets' orbits-Subtract 726 parts from 1015, and there will remain 289 parts for Venus's diltance from the Earth at that time.
13. Now, fince the horizontal parallaxes of the planets are * inverfely as their diftances from the Earth's center, it is plain, that as Venus will be between the Earth and the Sun on the day of her tranfit, and confequently her parallax will be then greater than the Sun's, if her horizontal parallax can be on that day afcertained by obfervation, the Sun's horizontal parallax may be found, and confequently his diftance from the Earth.-Thus, fuppole Venus's horizontal parallax fhould be found to be \(36^{\prime \prime} \cdot 3480\); then, As the Sun's diftance 1015 is to Venus's diftance 28g, fo is Venus's horizontal parallax \(36^{\prime \prime} \cdot 3480\) to the Sun's horizontal parallax \(10^{\prime \prime} .3493\) on the day of her tranfit. And the difference of thefe two parallaxes, viz. \(25^{\prime \prime} .9987\) (which may be efteemed \(26^{\prime \prime}\)) will be the quantity of Venus's horizontal parallax from the Sun; which is one of the elements for projecting or delineating her tranfit over the Sun's difc, as will appear further on.

To find the Sun's horizontal parallax at the time of his mean diftance from the Earth, fay, As 1000 parts, "the Sun's mean diftance from the Earth's center, is to 1015 , his diftance from it on the

\footnotetext{
* To prove this, let \(S\) be the Sun (Fig. 3.) \(V\) Venus, \(A B\) the Earth, \(C\) its center, and \(A C\) its femidiameter. The angle \(A V C\) is the horizontal parallax of Venus, and ASC the horizontal parallax of the Sun. But by the property of plain triangles, as the fine of \(A V C\) (or of \(S V A\) its fupplement to 180) is to the fine of \(A S C\), fo is \(A S\) to \(A V\), and fo is CS to CV.\(N . B\). In all angles lefs than a minute of a degree, the fines, tangents, and arcs, are fo nearly equal, that they may, without error, be ufed for one another. And here we make ufe of Gardiner's logarithmic tables, becaufe they have the fines to every fecond of a degree.
}
dav of the tranfit, fo is \(10^{\prime \prime} \cdot 3493\), his horizontal parallax on that day, to \(10^{\prime \prime} .5045\), his horizontal parallax at the time of his mean diftance from the Earth's center.
14. The Sun's parallax being thus (or any other way fuppofed to be) found, at the time of his mean difance from the Earth, we may find his true diftance from it, in femidiameters of the Earth, by the following analogy. As the fine (or tangent of io fmall an arc as that) of the Sun's parallax \(10^{\prime \prime}: 5045\) is to radius, fo is unity, or the Earth's femidiameter, to the number of femidiameters of the Earth that the Sun is diftant from its center, which number, being multiplied by 3985 , the number of miles contained in the Earth's femidiameter, will give the number of miles which the Sun is diftant from the Earth's center.

Then, by § if, As 100000 , the Earth's mean diftance from the Sun in parts, is to 38710 , Mercury's mean diftance from the Sun in parts, fo is the Earth's mean diftance from the Sun in miles to Mercury's mean diftance from the Sun in miles.And,

As 100000 is to 72333 , fo is the Earth's mean diftance from the Sun in miles to Venus's mean diftance from the Sun in miles.-Likewife,

As 100000 is to 152369 , fo is the Earth's mean diftance from the Sun in miles to Mars's mean diftance from the Sun in miles.-Again,

As 100000 is to 520096 , fo is the Earth's mean diftance from the Sun in miles to Jupiter's mean diftance from the Sun in miles. - Lattly,

As 100000 is to 954006 , fo is the Earth's mean diftance from the Sun in miles to Saturn's mean diffance from the Sun in miles.

And thus, by having found the diftance of any one of the planets from the Sun, we have fufficient data for finding the diftance of all the reft. - And then, from their apparent diamcters at thefe known diftances,
diftances, their real diameters and bulks may be found.
15. The Earth's diameter, as feen from the Sun, fubtends an angle of double the Sun's horizontal parallax, at the time of the Earth's mean diftance from the Sun; and the Sun's diameter, as feen from the Earth at that time, fubtends an angle of \(32^{\prime} 2^{\prime \prime}\), or \(1922^{\prime \prime}\). Therefore, the Sun's diameter is to the Earth's diameter, as 1922 is to 21 . And fince the relative bulks of fpherical bodies are as the cubes of their diameters, the Sun's bulk is to the Earth's bulk, as 756058 is to 1 ; fuppofing the Sun's mean horizontal parallax to be \(10^{\prime \prime} .5\), as above.
16. It is plain by Fig. 4. that whether Venus be at \(U\) or \(V\), or in any other part of the right line \(B V S\), it will make no difference in the time of her total ingrefs on the Sun at \(S\), as feen from \(B\); but as feen from \(A\) it will. For, if Venus be at \(V\), her horizontal parallax from the Sun is the arc \(F e\), which meafures the angle \(F A e\) : but if the be nearer the Earth, as at \(U\), her horizontal parallax from the Sun is the arc \(f e\), which meafures the angle \(f A e\); and this angle is greater than the angle \(F A e\), by the difference of their meafures \(f F\). So that, as the diftance of the celeftial object from the Earth is lefs, iss parallax is the greater.
17. To find the parallax of Venus by the above method, it is neceflary, I. That the difference of meridians of the two places of obfervation be \(90^{\circ}\). - 2 . That the time of Venus's total ingrefs on the Sun be when his eaftern limb is either on the meridian of one of the places, or very near it.-And, 3. That each obferver has his clock exactly regulated to the equal time at his place. But as it might, perhaps, be difficult to find two places on the Earth fuiced to the firt and lecond of thefe requifites, we fhall thew how this important problem may be folved by a fingle oblerver, if he be exact
as to his longitude, and has his clock truly adjufted to the equal time at his place.
18. That part of Venus's orbit in which fhe will move during her tranfit on the Sun, may be confidered as a ftraight line; and therefore, a plane may be conceived to pals both through it and the Earth's center. To every place on the Earth's furface cut by this plane, Venus will be feen on the Sun in the fame path that the would defcribe as feen from the Earth's center: and therefore fhe will have no parallax of latitude, either north or fouth; but will have a greater or lefs parallax of longitude, as the is more or lefs diftant from the meridian, at any time during her tranfit.

Matura, a town and fort on the fouth coaft of the inand of Ceylon, will be in this plane at the time of Venus's total ingrefs on the Sun; and the Sun will then be \(620 \frac{1}{2}\) eaft of the meridian of that place. Confequently to an obferver at Matura, Venus will have a confiderable parallax of longitude caftward from the Sun, when the would appear to touch the Sun's eaftern limb as feen from the Earth's center, at which the Aftronomical Tables fuppofe the obferver to be placed, and give the times as feen from thence.
19. According to thefe tables, Venus's total ingrefs on the Sun will be 50 minutes after VII in the morning, at Matura \({ }^{*}\), fuppofing that place to be \(80^{\circ}\) eaft longitude from the meridian of London; which is the obferver's bufinefs to determine. Let us imagine that he finds it to be exactly fo, but that to him the total ingrefs is at VII hours 55 minutes 46 feconds, which is 5 minutes 46 feconds later than the true calculated time of total ingrefs, as feen from the Earth's center. Then, as Venus's

\footnotetext{
* The time of total ingrefs at London, as feen from the Earth's center, is at 30 minutes after II in the morning; and if Matura be juft \(80^{\circ}\) (or 5 hours 20 minutes) eatt of Londion, when it is 30 minutes paft 11 in the morning at London, it is so minutes pait VII at Matura.
}
motion on (or toward, or from) the Sun is at the rate of 4 minutes of a degree in an hour (by \(\$ 10\).) her motion muft be \(23^{\prime \prime}\). I of a degree in 5 minutes 46 feconds of time : and this \(23^{\prime \prime \prime} .1\) is her parallax eaftward, from her total ingrefs as feen from Ma tura, when her ingrefs would be total if feen from the Earth's center.
20. At VII hours 50 minutes in the morning, the Sun is \(62^{\circ} \frac{1}{2}\) from the meridian; at V1 in the morning he is \(90^{\circ}\) from it : therefore, as the fine of \(62^{\circ \frac{1}{2}}\) is to the fine of \(23^{\prime \prime} .1\) (which is Venus's parallax from her true place on the Sun at VII hours 50 minutes) fo is radius, or the fine of \(90^{\circ}\), to the fine of \(26^{\prime \prime}\), which is Venus's horizontal parallax from the Sun at VI. In logarithms thus:

Divide the Sun's diftance from the Earth, 1015 , by his difance from Venus 726 (\(\$ 12\).) and the quotient will be 1.3980; which being multiplied by Venus's horizontal parallax from the Sun \(26^{\prime \prime}\), will give \(36^{\prime \prime} .3480\), for her horizontal parallax as feen from the Earth at that time.-Then (by §13.) as the Sun's diftance \(10: 5\) is to Venus's diftance 289 , fo is Venus's horizontal parallax \(36^{\prime \prime} .3480\) to the Sun's horizontal parallax \(10^{\prime \prime} .3493\)-If Venus's horizontal parallax from the Sun is found by obfervation to be greater or lefs than \(26^{\prime \prime}\), the Sun's horizontal parallax muft be greater or lefs than \(10^{\prime \prime} .3493\) accordingly.

2I. And thus, by a fingle obfervation, the parallax of Venus, and confequently the parallax of the Sun, might be found, if we were fure that the Afronomical tables were quite correct as to the time of Venus's total ingrefs on the Sun.-But although the tables may be fafely depended upon
for fhewing the true duration of the tranfit, which will not be quite 6 hours from the time of Venus's total ingrefs on the Sun's eaftern limb, to the beginning of her egrefs from his weftern; yet they may perhaps not give the true times of thefe two internal contacts: like a good common clock, which though it may be trulted to for meafuring a few hours of time, yet perhaps it may not be quite adjufted to the meridian of the place, and confequently not true as to any one hour; which every one knows is generally the cafe. - Therefore, to make fure work, the obferver ought to watch both the moment of Venus's total ingrefs on the Sun, and her beginning of egrefs from him, fo as to note precifely the times between thefe two inftants, by means of a good clock; and by comparing the interval at his place with the true calculated interval as feen from the Earth's center, which will be 5 hours 58 minutes, he may find the parallax of Venus from the Sun both at her total ingrefs and beginning of egrefs.
22. The manner of obferving the tranfit fhould be as follows:- The obferver being provided with a good telefcope, and a pendulum clock well adjutted to the mean diurnal revolution of the Sun, and as near to the time at his place as conveniently may be; and having an affiftant to watch the clock at the proper times, he muft begin to obferve the Sun's eaftern limbthrough his telefcope, twenty minutes at leaft before the computed time of Venus's total ingrefs upon it, left there fhould be an error in the time of the beginning, as given by the tables.

When he perceives a dent (as it were) to be made in the Sun's limb, by the interpofition of the dark body of Venus, he muft then continue to watch her through the telefcope as the dent increafes; and his affiftant muft watch the time fhewn by the clock, till the whole body of the planet appears juft within the Sun's limb: and the moment when the bright limb of the Sun appears
clofe by the eaft fide of the dark limb of the planet, the obferver, having a little hammer in his hand, is to ftrike a blow therewith on the table or wall; the moment of which, the affiftant notes by the clock, and writes it down.

Then, let the planet pafs on for about 2 hours 59 minutes, in which time it will be got to the middle of its apparent path on the Sun, and confequently will then be at its leaft apparent diftance from the Sun's center; at which time, the obferver muft take its diftance from the Sun's center, by means of a good micrometer, in order to afcertain its true latitude or declination from the ecliptic, and thereby find the places of its nodes.

This done, there is but little occafion to oblerve it any longer, until it comes fo near the Sun's weftern limb, as almoft to touch it. Then the obferver muft watch the planet carefully with his telefcope: and his affiftant muft watch the clock, fo as to denote the precife moment of the planet's touching the Sun's limb, which the affiftant knows by the obferver's friking a blow with his hammer.
23. The affiftant mutt be very careful in obferving what minute on the Dial-plate the minutehand has paft, when he has obferved the fecondhand at the inftant the blow was fruck by the hammer; otherwife, though he be right as to the number of feconds of the current minute, he may be apt to make a miltake in the number of minutes.
24. To thofe places where the tranfit begins before XII at noon, and ends after it, Venus will have an eaftern parallax from the Sun at the beginning, and a weftern parallax from the Sun at the end; which will contract the duration of the tranfit, by caufing it to begin later, and end fooner, at thefe places, than it does as feen from the Earth's center; which may be explained in the following manner.

In Fig. 5. of Plate XIV. let \(B M A\) be the Earth, \(V\) Venus, and \(S\) the Sun. The Earth's motion on its axis from weft to eaft, or in the direction \(A M B\), carries an obferver on that fide contrary to the motion of Venus in her orbit, which is in the direction \(U V W\), and will therefore caufe her motion to appear quicker on the Sun's difc, than it would appear to an obferver placed at the Earth's center \(C\), or at either of its poles. For, if Venus were to ftand ftill in her orbit at \(V\) for twelve hours, the obferver on the Earth's furface would in that time be carried from \(A\) to \(B\), through the arc \(A M B\). When he was at \(A\), he would fee Venus on the Sun at \(R\); when at \(M\), he would fee her at \(S\); and when he was at \(B\), he would fee her at \(\tau\) : fo that his own motion would caufe the planet to appear in motion on the Sun through the line \(R S T\) : which being in the direction of her apparent motion on the Sun as the moves in her orbit \(U W\), her motion will be accelerated on the Sun to this obferver, juft as much as his own motion would fhift her apparent place on the Sun, if fhe were at reft in her orbit at \(V\).

But as the whole duration of the tranfit, from firft to laft internal contact, will not be quite fix hours; an obferver, who has the Sun on his meridian at the middle of the tranfit, will be carried only from \(a\) to \(b\) during the whole time thereof. And therefore, the duration will be much lefs contracted by his own motion, than if the planet were to be twelve hours in paffing over the Sun, as feen from the Earth's center.
25. The nearer Venus is to the Earth, the greater is her parallax, and the more will the true duration of her tranfit be contracted thereby; the farther The is from the Earth, the contrary; fo that the contraction will be in direct proportion to the parallax. Therefore, by obferving, at proper places, how much the duration of the tranfit is lefs than is true duration at the Earth's center, where it is

5 hours 58 minutes, as given by the AAronomical tables, the parallax of Venus will be afcertained.

26 The above method, (\(\$ 17, \mathcal{S}_{\ell q}\).) is much the fame as was prefcribed long ago by Doctor Halley; but the calculations differ confiderably from his; as will appear in the next article, which contains a tranflation of the Doetor's whole differtation on that fubject.- He had not computed his own tables when he wrore it, nor had he time before-hand to make a fufficient number of obfervations on the motion of Venus, fo as to determine whether the nodes of her orbit are at reft or no; and was therefore obliged to truft to other tables, which are now found to be erroneous.

\section*{A R T I C L E III.}

Containing Doctor Halley's Differtation on the methood of finding the Sun's parallax and diftance from the Earth, by the tranjit of Venus over the Sun's Difc, June the 6th, 1761. Tranfated from the Latin in Motte's Abridgment of the Pbilofopbical Tranfactions, Vol. I. page 243; with additional notes.

There are many things exceedingly paradoxical, and that feem quite incredible to the illiterate, which yet by means of mathematical principles may be eafily folyed. Scarce any problem will appear more hard and difficult, than that of decermining the dittance of the Sun from the Earth very near the truth : but even this, when we are made accuainted with fome exact obfervations, taken at places fixed upon, and chofen beforehand, will without much labour be effected. And this is what I am now defirous to lay before this illuftrious Society * (which I foretell will continue for ages) that I may explain before-hand to young Aftronomers, who may perhaps live to oblerve

\footnotetext{
* The Koyal sociery:
}
thefe things, a method by which the immenfe diftance of the Sun may be truly obtained, to within a five hundredth part of what it really is.

It is well known that the diftance of the Sun from the Earth is by different Aftronomers fuppofed different, according to what was judged moit probable from the beft conjecture that each would form. Ptolemy and his followers, as alfo Copernizus and \(\mathcal{T} y\) cho Brabe, thought it to be 1200 femidiameters of the Earth: Kepler 3500 nearly: Ricciolus doubles the diftance mentioned by Kepler, and \(H\) evelius only increafes it by one half. But the planets Venus and Mercury having, by the affiftance of the telefcope, been feen in the dife of the Sun, deprived of theirborrowed brightnefs, it is at length found that the apparent diameters of the planets are much lefs than they were formerly fuppofed; and that the femidiameter of Venus feen from the Sun fubtends no more than a fourth part of a minute, or fifteen feconds, while the femidiameter of Mercury, at its mean diftance from the Sun, is feen under an angle only of ten feconds; that the femidiameter of Saturn feen from the Sun appears under the fame angle; and that the femidiameter of Jupiter, the largeft of all the planets, fubtends an angle of no more than a third part of a minute at the Sun. Whence, keeping the proportion, fome modern Aftronomers have thought, that the femidiameter of the Earth, feen from the Sun, would fubtend a mean angle between that larger one fubtended by Jupiter, and that fmaller one fubtended by Saturn and Mercury; and equal to that fubtended by Venus (namely, fifteen leconds): and have thence concluded, that the Sun is diftant from the Earth almoft 14000 of the Earth's femidiameters. But the fame authors have on another account fomewhat increafed this diftance: for, inafmuch as the Moon's diameter is a little more than a fourth part of the diameter of the Earth, if the Sun's parallax fhould be fuppofed
fifteen feconds, it would follow, that the body of the Moon is larger than that of Mercury; that is, that a fecondary planet would be greater than a primary, which would feem inconfiftent with the uniformity of the mundane fyitem. And on the contrary, the fame regularity and uniformity feems fcarcely to admit, that Venus, an inferior planet, that has no fatellite, fhould be greater than our Earth, which ftands higher in the fyftem, and has fuch a fplendid attendant. Therefore, to obferve a mean, let us fuppofe the femidiameter of the Earth feen from the Sun, or, which is the fame thing, the Sun's horizontal parallax, to be twelve feconds and a half; according to which, the Moon will be lefs than Mercury, and the Earth larger than Venus; and the Sun's diftance from the Earth will cone out nearly 16,500 of the Earth's femidiameters. This diftance I affent to at prefent, as the true one, till it fhall become certain what it is, by the Experiment which I propofe. Nor am I induced to alter my opinion by the authority of thofe (however weighty it may be) who are for placing the Sun at an immenfe diftance beyond the bounds here affigned, relying on obfervations made upon the vibrations of a pendulum, in order to determine thofe exceeding fmall angles; but which, as it feems, are not fufficient to be depended upon: ar leaft, by this method of inveftigating the parallax, it will come out fometinies nothing, or even negative ; that is, the diffance would either become infinite, or greater than infinite; which is abfurd. And indeed, to confefs the truth, it is hardly porfible for a man to diftinguifh, with any degree of certainty, feconds, or even ten feconds, with inftruments, let them be ever fo fkilfully made: therefore, it is not at all to be wondered at, that the exceffive nicety of this matter has eluded the many and ingenious endeavours of fuch fkilful operators.

About forty years ago, while I was in the inand of St. Ifelena, obferving the ftars about the fouth
pole, I had an opportunity of obferving, with the greateft diligence, Mercury paffing over the difc of the Sun; and (which fucceeded better than I could have hoped for) I obferved, with the greateft degree of accuracy, by means of a telefcope 24 feet long, the very moment when Mercury entering upon the Sun feemed to touch its limb within, and alfo the moment when going off it ftruck the limb of the Sun's difc, forming the angle of interior contact : whence I found the interval of time, during which Mercury then appeared within the Sun's difc, even without an error of one fecond of time. For the lucid line intercepted between the dark limb of the planet and the bright limb of the Sun, although exceeding fine, is feen by the eye; and the little dent made in the Sun's limb, by Mercury's entering the difc, appears to vanifh in a moment ; and alfo that made by Mercury, when leaving the difc, feems to begin in an inftant.When I perceived this, it immediately came into my mind, that the Sun's parallax might be accurately determined by fuch kind of obfervations as thefe; provided Mercury were but nearer to the Earth, and had a greater parallax from the Sun: but the difference of thefe parallaxes is fo little, as always to be lefs than the folar parallax which we feek; and therefore Mercury, though frequently to be feen on the Sun, is not to be looked upon as fit for our purpofe.

There remains then the tranfit of Venus over the Sun's dife; whofe parallax, being almoft four times as great as the folar parallax, will caufe very fenfible differences between the times in which Venus will feem to be paffing over the Sun at different parts of the Earth. And from thefe differences, if they be obferved as they ought, the Sun's parallax may be determined even to a finall part of a fecond. Nor do we require any other inftruments for this purpofe, than cominon telefcopes and clocks, only good of their kind; and in the obfervers, nothing more is, needful than fide-
\[
\text { Gg } 3 \text { lity, }
\]
lity, diligence, and a moderate fkill in Aftronomy. For there is no need that the latitude of the place fhould be fcrupulouny obferved, nor that he hours themfelves fhould be accurately determined with refpect to. the meridian: it is fufficient that the clocks be regulated according to the motion of the heavens, if the times be well reckoned from the total ingrefs of Venus into the Sun's dific, to the beginning of her egrefs from it; that is, when the ciark glube of Venus firt begins to touch the bright limb of the Sun within; which moments, I know by my own experience, may be obferved within a fecond of time.

But on account of the very ftrict laws by which the motions of the planets are regulated, Venus is feldom feen within the Sun's difc: and during the courfe of more than \(1=0\) years, it could nor be feen once; namely, from the year 1639 (when this moft pleafing fight happened to that excellent youth, Ilorrax, our countryman, and to him only, lince the creation) to the year 1761 ; in which year, according to the theories which we have hicherio found agreeable to the celeftial motions, Venus will again pafs over the Sun on the * 26 th of Moy, in the morning; fo that at London, about fix o'clock in the morning, we may expect to fee it near the middle of the Sun's dife, and not above four minutis of a degree fouth of the Sun's center. But the duration of this tranfit will be almoft eight hours; namely, from two o'clock in the morning till almont ten. Hence the ingref's will not be vifible in England; but as the Sun will at that time be in the 16th degree of Gemini, having almott \(=3\) degrees north declination, it will be feen without fetting at all in almott all parts of the north frigid zone: and therefore the inhabitants of the coaft of Norreny, beyund the city of Nidrofia, which is called Drontheim, as far as the North Cape, will be able to obferve Venus entering the
* The fixth of Gune, according to the New Stile

Sun's difc; and perhaps the ingrefs of Venus upon the Sun, when rifing, will be teen by the Scotch, in the northern parts of the kingdom, and by the inhabitants of the Sbetland Ifles, formerly called T bute. But at the time when Venus will be nearet the Sun's center, the Sun will be vertical to the northern fhores of the bay of Bengal, or rather over the kingdom of Pegu; and therefore in the adjacent regions, as the Sun, when Venus enters his dife, will be almoft four hours toward the eaf, and as many toward the weft when fhe leaves him, the apparent motion of Venus on the Sun will be accelerated by almoft double the horizontal parallax of Venus from the Sun ; becaufe Venus at that time is carried with a retrograde motion from eaft to weft, while an eye placed upon the Earth's furface is whirled the contrary way, from weft to eaft *. Suppofing
* This has been already taken nqtice of in \(\$ 24\); but I fhall here endeavour to explain ir more at large, together with fome of the following part of the Doctor's Effay, by a figure.

In Fig. 1 of Plate XV. let \(C\) be the center of the Earth, and \(Z\) the center of the Sun. In the right line \(C v Z\), make \(v Z\) to \(C\) 石 as 726 is to 1015 (\(\$ 12\)). Let \(a c b d\) be the Earth, \(\tau\) Venus's place in her orrort at the time of her conjunction with the Sun, and let I \(S U\) he the Sun, whofe diameter is \(3:^{\prime} 42^{\prime \prime}\).

The motion of Venus in her orbit is in the cirection Non and the Earth's motion on its axis is according to the order of the 24 hours placed alound it in the figure. Therefore, fuppofing the mouth of the Ganges to be at \(G\), when Venus is at \(E\) in her orbit, and to be carried from \(G\) to \(g\) by the Earth's motion on its axis, while Venus moves from \(E\) to \(e\) in her orbit; it is plain that the motions of Venus and the Ganges are contrary to each other.

The truc motion of Venus in her orbit, and confequently the fpace the feems to run over on the Sun's difc in any given time, could be feen only from the Earth's center C, which is at relt with refpert to its furface. And as feen from \(C\), her path on the Sun would be in the right line \(\tau^{\prime} t U\); and her motion therein at the rate of four minutes of a degree in an hour. T' is the foint of the Sun's eatern limb which Venus seems to touch at the moment of her total ingrefs on the Sun, as feen from \(C\), when Venlus is at \(E\) in her orbit; and \(U\) is the point of the sun's weflern limb which the feems to touch at the moment of her beginning of egrefs from the Sun, as feen from \(C\), when the is at \(\varepsilon\) in her orbit.

Suppofing the Sun's parallax (as we have faid) to be \(12 \frac{1^{\prime \prime}}{2 \prime}\), the parallax of Venus will be \(43^{\prime \prime}\); from which fubtracting the parallax of the Sun, there will remain \(30^{\prime \prime}\) at leaft for the horizontal parallax of Venus from the Sun; and therefore the motion of Venus will be increafed \(45^{\prime \prime}\) at leaft by that parallax, while fhe paffes over the Sun's difc, in thofe elevations of the pole which are in places near the tropic, and yet more in the neighbourhood of the equator. Now, Venus at that time will move on the Sun's difc, very nearly at the rate of four minutes of a degree in an hour; and therefore in minutes of time at leaft are to be allowed for \(45^{\prime \prime}\), or three fourths of a minute of a degree;

When the mouth of the Ganges is at (in revolving through the arc \(G_{m g}\)) the Sun is on its meridian. Therefore, fince \(G\) and \(g\) are equally diftant from \(m\) at the beginning and ending of the tranfit, it is plain that the Sun will be as far eaft of the meridian of the Ganges (at \(G\)) when the tranfit begins, as it will be weft of the meridian of the fame place (revolved from \(G\) to \(g\)) when the tranfit ends.

But although the beginning of the tranfit, or rather the moment of Venus's total ingrefs upon the Sun at \(T\), as feen from the Earth's center, muft be when Venus is at \(E\) in her orbit, becaufe fhe is then feen in the direction of the right line \(C E T\); yet at the fame inftant of time, as feen from the Ganges at \(G\), the will be fhort of her ingrefs on the Sun, being then feen eaftward of him, in the right line \(G E K\), which makes the angle \(K E T\) (equal to the oppofite angle \(G E C\)), with the right line CET. This angle is called the angle of Venus's parallax from the Sun, which retards the beginning of the cranfit as feen from the banks of the Ganges; fo thas the Ganges \(G\), muft advance a little farther toward \(m\), and Venus muft move on in her orbit from \(E\) to \(R\), before the can be feen from \(G\) (in the right line \(G R I\)) wholly within the Sun's dife at \(T\).

When Venus comes to \(e\) in her orbit, the will appear at \(U\), as feen from the Earth's center \(C\), juft begirning to leave the Sun; that is, at the beginning of her egrefs from his weftern limb: but at the fame inftant of time, as feen from the Ganges, which is then at \(g\), the will be quite clear of the Sun toward the weft; being them feen from \(g\) in the right line \(g e L\), which makes an angle, as \(U_{c} L\) (equal to the oppofite angle \(C(g)\), with the right line \(C_{e} U\); and this is the angle of Venus's parallax
a degree; and by this fpace of time, the duration of this eclipfe caufed by Venus will, on account of the parallax, be Chortened. And from this fhortening of the timeonly, we might fafely enough draw a conclufion concerning the parallax which we are in fearch of, provided the diameter of the Sun, and the latitude of Venus, were accurately known. But we cannot expect an exact computation in a matter of fuch fubtilty.

We muft endeavour therefore to obtain, if poffible, another obfervation, to be taken in thofe places where Venus will be in the middle of the Sun's difc at midnight; that is, in places under the oppofite meridian to the former, or about 6 hours or 90 degrees weft of London; and where Venus enters upon the Sun a little before its fet-
parallax from the Sun, as feen from the Ganges at \(g\), when the is but juf beginning to leave the Sun at \(U\), as feen from the Earth's center \(C\).

Here it is plain, that the duration of the tranfit about the mouth of the Ganges (and alfo in the neighbouring places) will be diminiked by about double the quantity of Venus's parallax from the Sun at the beginning and ending of the tranfit. For Venus mult be at \(E\) in her orbit when fhe is wholly upon the Sun at \(T\), as feen from the Earth's center \(C\) : but at that time fhe is fhort of the Sun, as feen from the Ganges at \(G\), by the whole quantity of her eaftern parallax from the Sun at that time, which is the angle KET. [This angle, in \(\mathrm{fact}_{\mathrm{a}}\), is only \(23^{\prime \prime}\); though it is reprefented much larger in the figure, becaufe the Earth therein is a valt deal too big.] Now, as Venus moves at the rate of \(4^{\prime}\) in an hour, the will move \(23^{\prime \prime}\) in 5 minutes 45 feconds: and, therefore, the tranfit will begin later by 5 minetes 45 feconds at the banks of the Ganges than at the Earth's center.-When the tranfit is ending at \(U\), as feen from the Earth's center at \(C\), Venus will be quite clear of the Sun (by the whole quantity of her weftern parallax from him) as feen from the Ganges, which is then at \(g:\) and this parallax will be \(22^{\prime \prime}\), equal to the fpace through which Tenus moves in 5 minutes 30 feconds of time: fo that the tranfit will end \(5 \frac{1}{2}\) minutes fooner as feen from the Ganges, than as feen from the Earth's center.

Hence the whole contraction of the duration of the tranfit at the mouth of the Ganges will be 11 minutes 15 feconds of time: for it is 5 minutes 45 feconds at the beginning, and 5 minutes 30 feconds at the end.
ting, and goes off a little after its rifing. And this will happen under the above-mentioned meridian, and where the elevation of the north pole is about 56 degrees; that is, in a part of Hudjon's Boy, near a place called Port-Nelfon. For, in this and the adjacent places, the parallax of Venus will incseafe the duration of the tranfit by at leaf fix minutes of time; becaufe, while the Sun, from its fetting to its rifing, feems to pafs under the pole, thofe places on the Earth's difc will be carried with a motion from eaft to weft, contrary to the motion of the Ganges; that is, with a motion confpiring with the motion of Venus; and therefore Venus will feem to move more flowly on the Sun, and to be longer in pafing over his difc *.
* In Fig. I. of Plate XV. let \(a C\) be the meridian of the eafern nacuith of the Ganges; and \(6 C\) the meridian of PortNelfor as the mouth of York River in Hudfon's Bay, \(56^{\circ}\) north latitude. As the meridian of the Ganges revolves from \(a\) to \(c_{2}\) the meridian of Port. Niljon will revolve from \(b\) to \(d\) : therefore, while the Ganges revolves from \(G 10 \mathrm{~g}\), through the arc Gins, Port- Nelfon revilues the contrary way (as feen from the Sun (r Venu:) from \(P\) to \(p\) through the arc \(P n p\). - Now, as the motion of \(V\) inus is from \(E\) to \(e\) in her orbir, while fhe feems to pafs over the Sun's difc in the right line \(\mathcal{T} t \mathcal{U}\), as feen from the Earth's Cen:er \(C\), it is plain that while the motion of the Ganges is cunsrary to the motion of Verius in her orbir, and thercly fhontens the duration of the tranfit at that place, the motion of Port. Nelfon is the fame way as the metion of Venus, and will therefore increafe the duration of the tranfit: which may in fome degree be illuftrated by fu; pofing, that while a hip is under fail, if tro birds fil along the fide of the thip in contuary direttions to each other, the bira which flies contrary to the motion of the fhip will pais by it fooner than the bird will, which flies the fame way that the fhip muves.

In fine, it is plain by the figure, that the duration of the tranfic mult te longer as feen from Port Niflen, than as feen from the Earrh's center; ard lonser as tern Irom the Earth's center, than as feen from the meuh of the Ganges.- For Port Nielfon muft be at \(P\), and Venus at \(N\) in her urbit, when fite appears wholly within the Sun at \(T\) : and the lame piace mulf te at \(\rho\), and Venus at \(n\), when \(m_{n}=\) appears at \(L\), beceinning to leave the Sun. - The Ganges mult be at \(G\), and Venus

If therefore it thould happen that this tranfit fhould be properly obferved by fkilful perfons at both thefe places, it is clear, that its duration will be 17 minutes longer, as feen from PortNelfon, than as feen from the Eaft-Indies. Nor is it of much confequence (if the Engli/h fhall at that time give any attention to this affair) whether the obfervation be made at Fort-George, commonly called Madras, or at Bencoolen on the weftern fhore of the ifland of Sumatra, near the Equator. But if the French fhould be difpofed to take any pains herein, anoblerver may ftation himfelf conveniently enough at Pondicherry on the weft thore of the bay of Beingal, where the altitude of the pole is about 12 degrees. As to the Dutch, their celebrated mart at Batavia will afford them a place of obfervation fit enough fur this purpofe, provided they alfo have but a difpofition to affift in advancing, in this particular, the knowledge of the heavens.And indeed I could wifh that many obfervations of the fame phenomenon might be taken by different perfons at feveral places, both that we might arrive at a greater degree of certainty by their agreement, and alfo left any fingle obferver fhould be deprived, by the intervention of clouds, of a fight, which I know not whether any man living in this or the next age will ever fee again; and on which depends the certain and adequate folution of a problem the moft noble, and at any other time not to be attained to. I recommend it, therefore, again and again, to thofe curious Altronomers, who (when I am dead) will have an opportunity of oblerving thefe things, that they would remem-
at \(R\), when the is feen from \(G\) upon the Sun at \(T\); and the fame place muft he at \(g\), and Venus at \(r\), when fhe begins to leave the Sun at \(U\), as icen from \(g\). So that Venus mult move from \(N\) to \(n\) in her orbit, while the is feen to pafs over the Sun from Port-Nelfon; from Eto \(e\) in palfing over the Sun, as teen from the Earth's center: and only from \(R\) to \(r\) while the paffes over the Sun, as feen from the banks of the Ganges.
ber this my admonition, and diligently apply themfelves with all their might to the making this obfervation; and I earneftly wifh them all imaginable fuccefs; in the firft place that they may not, by the unfeafonable obfcurity of a cloudy fky, be deprived of this mof defirable fight; and then, that having afcertained with more exactnefs the magnitudes of the planetary orbits, it may redound to their immortal fame and glory.

We have now fhewn, that by this method the Sun's parallax may be inveftigated to within its five hundredth part, which doubtlefs will appear wonderful to fome. But if an accurate obfervation be made in each of the places above marked out, we have already demonftrated that the durations of this eclipfe made by Venus will differ from each other by 17 minutes of time; that is, upon a fuppofition that the Sun's parallax is \(12 \frac{1^{\prime \prime}}{2}\). But if the difference fhall be found by obfervation to be greater or lefs, the Sun's parallax will be greater or lefs, nearly in the fame proportion. And fince 17 minutes of time are anfwerable to \(12 \frac{1}{2}\) feconds of folar parallax, for every fecond of parallax there will arife a difference of more than 80 feconds of time; whence, if we have this difference true to two feconds, it will be certain what the Sun's parallax is to within a 40 th part of one fecond; and therefore his diftance will be determined to within its goodth part at leaft, if the parallax be not found lefs than what we have fuppofed: for 40 times \(12 \frac{1}{2}\) make 500 .

And now I think I have explained this matter fully, and even more than I needed to have done, to thofe who underftand Aftronomy: and I would have them take notice, that on this occafion, I have had no regard to the latitude of Venus, both to avoid the inconvenience of a more intricate calculation, which would render the conclufion lefs evident; and alfo becaufe the motion of the nodes
of Venus is not yet difcovered, nor can be determined but by fuch conjunctions of the planet with the Sun as this is. For we conclucie that Venus will pafs 4 minutes below the Sun's center, only in confequence of the fuppofition that the plane of Venus's orbit is immoveable in the fphere of the fixed ftars, and that its nodes remain in the fame places where they were found in the year 1639. But if Venus, in the year 1761, hould move over the Sun in a path more to the fouth, it will be manifeft that her nodes have moved backward among the fixed ftars; and if more to the north, that they have moved forward; and that at the rate of \(5 \frac{\pi}{2}\) minutes of a degree in IOO Julian years, for every minute that Venus's path fhall be more or lefs diftant than the above faid 4 minutes from the Sun's center. And the difference between the duration of thefe eclipfes will be fomewhat lefs than 17 minutes of time, on account of Venus's fouth latitude; but greater if by the motion of the nodes forward the fhould pafs on the north of the Sun's center.
But for the fake of thofe, who, though they are delighted with fydereal obfervations, may not yet have made themfelves acquainted with the doctrine of parallaxes, I chufe to explain the thing a little more fully by a fcheme, and alfo by a calculation fomewhat more accurate.

Let us fuppofe that at London, in the year 176 r , on the 6 th of Yune, at 55 minutes after \(V\) in the morning, the Sun will be in Gemini \(15^{\circ} 37^{\prime}\), and therefore that at its center the ecliptic is inclined toward the north, in an angle of \(6^{\circ} 10^{\prime}\) : and that the vifible path of Venus on the Sun's dific at that time declines to the fouth, making an angle with the ecliptic of \(8^{\circ} 28^{\prime}\); then the path of Venus will alfo be inclined to the fouth, with refpect to the equator, interfecting the parallels of declination
nation at an angle of \(2^{\circ} 18^{\prime * *}\). Let us alfo fuppofe, that Venus, at the forementioned time, will be at her leaft diftance from the Sun's center, viz. only four minutes to the fouth; and that every hour fhe will defcribe a fpace of 4 minutes on the Sun, with a retrograde motion. The Sun'slemidiamecer will be \(15^{\prime} 51^{\prime \prime}\) nearly, and that of Verus \(37 \frac{\frac{1}{2}^{\prime \prime}}{}\). And let us fuppofe, for trial's fake, that the difference of the horizontal parallaxes of Venus with the Sun (which we want) is \(31^{\prime \prime}\), fuch as it comes out if the Sun's parallax be fuppofed \(12 \frac{1}{2}\) ". Then, on the center \(C\) (Plate XV. Fig. 2.) let the little circle \(A B\), reprefenting the Earth's difc, be defrribed, and let its femidiameter \(C B\) be \(31^{\prime \prime}\); and let the elliptic parallels of 22 and 56 degrees of north latitude (for the Ganges and Port-Nelfon) be drawn within it, in the manner now ufed by Aftronomers for conftructing folar eclipfes. Let \(B C g\) be the meridian in which the Sun is, and to chis, let the right line \(F H G\), reprefenting the path of Venus, be inclined at an angle of \(2^{\circ} 18^{\prime}\); and let it be diftant from the center C 240 fuch parts, whereof \(C B\) is 3 I . From \(C\) let fall the right line CH , perpendicular to \(F G\); and fuppofe Venus to be at \(H\) at 55 minutes after V in the morning. Let the right line \(F H G\) be divided into the horary fpaces IIIIV, IV V, V VI, \&c. each equal to CH ; that is, to 4 minutes of a degree. Alfo, let the right line \(L M\) be equal to the difference of the
* This was an overfight in the Doctor, occafioned by his placing both the Earth's axis BCg (Fig. 2. of Plate XV.) and the Axis of Venus's orbit CH on the fame fide of the axis of the ecliptic \(C K\); the former making an angle of \(6^{\circ} 10^{\prime}\) therewith, and the latter an angle of \(8^{\circ} 28^{\prime}\); the difference of which angles is only \(2^{\circ} 18^{\prime \prime}\). But the truth is, that the Earth's axis, and the axis of Venus's orbit, will then lie on different fides of the axis of the ecliptic, the former making an angle of \(6^{\circ}\) therewith, and the latter an angle of \(8 \frac{1}{2}{ }^{\circ}\). Therefore, the fum of thefe angles, which is \(14 \frac{1^{\circ}}{2}\) (and not their diffe"ence \(2^{\circ} 18^{\prime}\)) is the inclination of Venus's vifible path to the equator and parallels of declination.
apparent femidiameters of the Sun and Venus, which is \(15^{\prime}{ }^{1} 3 \frac{11^{\prime \prime}}{2}\); and a circle being defcribed with the radius \(L M\), on a center taken in any point within the little circle \(A B\) reprefenting the Earth's dife, will meet the right line \(F G\) in a point denoting the time at London when Venus fhall touch the Sun's limb internally, as feen from the place of the Earth's furface that anfiwers to the point affumed in the Earth's difc. And if a circle be defcribed on the center \(C\), with the radius \(L M\), it will meet the right line \(F G\), in the points \(F\) and \(G\); and the fpaces \(F H\) and \(G H\) will be each equal to \(14^{\prime} 4^{\prime \prime}\), which fpace Venus will appear to pafs over in 3 hours 40 minutes of time at London; therefore, \(F\) will fall in II hours 15 minutes, and \(G\) in IX hours 35 minutes in the morning. Whence it is manifeft, that if the magnitude of the Earth, on account of its immenfe diftance, fhould vanifh as it were into a point; or, if being deprived of a diurnal motion, it fhould al ways have the Sun vertical to the fame point \(C\); the whole duration of this eclipfe would be 7 hours 20 minutes. But the Earth in that time being whirled through I Io degrees of longitude, with a motion contrary to the motion of Venus, and confequently the abovementioned duration being contracted, fuppofe 12 mi nutes, it will come out 7 hours 8 minutes, or 107 degrees, nearly.

Now, Venus will be at \(H\), at her leaft diftance from the Sun's center, when in the meridian of the eaftern mouth of the Ganges, where the altitude of the pole is about 22 degrees. The Sun therefore will be equally diftant from the meridian of tpat place, at the moments of the ingrefs and egrefs of the planet, viz. \(53 \frac{\mathrm{I}}{2}\) degrees; as the points a and \(b\) (reprefenting that place in the Earth's difc \(A B\)) are, in the greater parallel, from the meridian \(B C g\). But the diameter ef of that parallel will be to the diflance \(a b\), as the fquare of the iadius to the rectangle under the fines of \(53 \frac{1}{2}\) and 68 de-
grees; that is, as \(x^{\prime} 2^{\prime \prime}\) to \(46^{\prime \prime} 13^{\prime \prime \prime}\). And by a good calculation (which, that I may not tire the reader, it is better to omit) I find, that a circle defcribed on \(a\) as a center, with the radius \(L M\), will meet the right line FII in the point \(M\), at II hours 20 minutes 40 feconds; but that being defcribed round \(b\) as a center, it will meet \(H G\) in the point \(N\) at IX hours 29 minutes 22 feconds, according to the time reckoned at London: and therefore, Venus will be feen entirely within the Sun at the banks of the Ganges for 7 hours 8 minutes 42 feconds: we have then rightly fuppofed, that the duration will be 7 hours 8 minutes, fince the part of a minute here is of no confequence.

But adapting the calculation to Port-Nelfon, I finc\}, that the Sun being about to fet, Venus will enter his dilc; and immediately after his rifing fhe will leave the fame. That place is carried in the intermediate time through the hemifphere oppofite to the Sun, from \(c\) to \(d\), with a motion confpiring with the motion of Venus; and therefore, the flay of Venus on the Sun will be about 4 minutes longer, on account of the parallax; fo that it will be at leatt 7 hours 24 minutes, or 111 degrees of the equator. And fince the latitude of the place is 56 degrees, as the fquare of the radius is to the rectangle contained under the fines \(55^{\frac{1}{2}}\) and 34 degrees, fo is \(A B\), which is \(I^{\prime} 2^{\prime \prime}\), to \(c d\), which is \(28^{\prime \prime} 33^{\prime \prime \prime}\). And if the calculation be juftly made, it will appear that a circle defcribed on \(c\) as a center, with the radius \(L M\), will meet the right line FH in \(O\) at II hours 12 minutes 45 feconds; and that fuch a circle, defcribed on \(\dot{d}\) as a center, will meet \(H G\) in \(P\), at IX hours \(3^{6}\) minutes 37 feconds; and therefore the duration at Port-Nelfon will be 7 hours 23 minutes 52 feconds, which is greater than at the mouth of the Gainges by 15 minutes 10 feconds of time. But if Venus hould pals over the Sun without having any latitude, the difference would be 18 minutes 40 feconds; and
if the Could pals 4 ' north of the Sun's center, the difference would amount to 21 minutes 40 seconds, and will be fill greater, if the planet's north latirude be more increased.

From the foregoing hypothefis it follows, that at London, when the Sun riles, Venus will have entered his diff; and that, at IX hours 37 minutes in the morning, the will touch the limb of the Sun internally in going off; and laftly, that the will not entirely leave the Sun till IX hours \(\dot{5} 6\) minutes.

It likewife follows from the fame hypothefis, that the center of Venus should jut touch the Sun's northern limb in the year 1769 , on the third of Fine, at XI o'clock at night. So that, on account of the parallax, it will appear in the northern parts of Norway, entirely within the Sun, which then does not fer to thole parts; while on the coats of Peru and Chili, it w! ll Sem to travel over a finall portion of the diff of the Petting Sun, and over that of the riffing Sun at the Molucca ISlands, and in their neighbourhood.- But if the nodes of Yenus be found to have a retrograde motion (as there is forme reafon to believe from rome later obfervatons they have) then Venus will be den every where within the Sun's diff; and will afford a much better method for finding the Sun's parallax, by almoft the greateft difference in the duration of there eclipfes that can poffibly happen.

Bur how this parallax may be deduced from observations made fomewhere in the Eaft-Indies, in the year 176 I , both of the ingress and egress of Venus, and compared with thole made in its going off with us, namely, by applying the angles of a triangle given in specie to the circumference of three equal circles, hall be explained on tome ocher occafion.

\section*{ARTICLEIV.}

\section*{Sberwing that the whole method propofed by the Doilor cannot be put in practice, and why.}
27. In the above Differtation, the Doctor has explained his merhod with great modety, and even with fome doubtfulnefs with regard to its full fuccefs. For he tells us, that by means of this tranfit, the Sun's parallax may only be determined within its five hundredth part, provided it be not lefs than \(12 \frac{1^{\prime \prime}}{2}\); that there may be a good obfervation made at Pori-Neifon, as well as about the banks of the Ganges; and that Venus does not pafs more than 4 minutes of a degree below the center of the Sun's difc.-He hastaken all proper pains not to raifeour expectations too high, and yet, from his well-known abilities, and character as a great Aftronomer, it feems mankind in general have laid greater ftrefs upon his method, than he ever defired them to do. Only, as he was convinced it was the beft method by which this important problem can ever be folved, he recommended it warmly for that reafon. He had not then made a fufficient number of obfervations, by which he could determine, with cerrainty, whether the nodes of Venus'sorbit have any motion; or if they have, whether it be backward or forward with refpect to the ftars. And confequently, having not then made hisown tables, he was obliged to calculate from the beft that he could find. But thofe tables allow of no motion to Venus's nodes, and alfo reckon her conjunction with the Sun to be about half an hour too late.
28. Eut more modern obfervations prove, that the nodes of Venus's orbit have a motion backward, or contrary to the order of the figns, with refpect to the fixed flars. And this motion is allowed for in the Ductor's tables, a great part of which were made from his own oblervations.

And it appears by thefe tables, that Venus wiil be fo much farther paft her defcending node at the time of this tranfit, than fhe was paft her afcending node at her cranfit in November, 1639 ; that inftead of paling only four minutes of a degree beluw the Sun's center in chis, fhe will pafs almoft Iominutes of a degree below it : on which account, the line of her tranfit will be fo much fhortened, as will make her paffage over the Sun's difc about an hour and 20 minutes lefs than if the paffed only 4 minutes below the Sun's center at the middle of her tranfit. And therefore, her parallax from the Sun will be fo much diminified, both at the beginning and end of her tranfit, and at all places from which the whole of it will be feen, that the difference of its durations, as feen from them, and as fuppofed to be feen from the Earth's center, will not amount to il minutes of time.
29. But this is not all: for although the tranfit will begin before the Sun fets to Port-Nelfon, it will be quite over before he rifes to that place next morning, on acconnt of its ending fo much fooner than as given by the tables to which the Doctor was obliged to truft. So that we are quite deprived of the advantage that otherwife would have arifen from obfervations made at Port-Nelfon.
30. In order to trace this affair through all its intricacies, and to render it as intelligible to the reader as I can, there will be an unavoidable neceffity of dwelling much longer upon it than I could otherwife wifh. And as it is impofible to lay down truly the parallels of latitude, and the fituations of places at particular times, in fuch a fmall difc of the Earch as muft be projected in fuck a fort of diagram as the Doctor has given, fo as to meafure thereby the exact times of the beginning and ending of the tranfit at any given place, unlefs the Sun's difc be made at leaft 30 inches diameter in the projection, and to which the Doctor did not quite truft without making fome calculations; I
fhall take a different method, in which the Earth's difc may be made as large as the operator pleafes: but if he makes it only 6 inches in diameter, he may meafure the quantity of Venus's parallax from the Sun upon it, both in longitude and latitude, to the fourth part of a fecond, for any given time and place ; and then, by an eafy calculation in the common rule of three, he may find the effect of the parallaxes on the duration of the tranfit. In this, I fhall firt fuppofe with the Doctor, that the Sun's horizontal parallax is \(12 \frac{1}{2}\) "; and confequently, that Venus's horizontal parallax from the Sun is \(31^{\prime \prime}\). And after projecting the tranfit, fo as to find the total effect of the parallax upon its duration, I fhall next fhew how nearly the Sun's real parallax may be found from the obferved intervals between the times of Venus's egrefs from the Sun, at particular places of the Earth; which is the method now taken both by the Englifh and French Aftronomers, and is a furer way whereby to come at the real quantity of the Sun's parallax, than by obferving how much the whole contraction of duration of the tranfit is, either at Bencoolen, Batavia, or Pondicherry.

\section*{ARTICLEV.}

Sberwing bow to project the tranfit of Venus on the Sun's difc, as feen from different places of the Earth; fo as to find what its vifible duration muft be at any given place, according to any affumedparallax of the Sun; and from the obferved intervals between the times of Venus's egrefs from the Sun at particular places, to find the Sun's true borizontal parallax.
31. The elements for this projection are as follows:
I. The true time of conjunction of the Sun and Venus; which, as feen from the Earth's center, and reckoned accordirg to the equal time at

London, is on the 6th of Fune 1761, at 46 mi nutes 17 feconds after \(V\) in the morning, according to Dr. Halley's tables.
II. The geocentric latitude of Venus at that time, \(9^{\prime} 43^{\prime \prime}\) louch.
III. The Sun's femidiameter, \(15^{\prime} 50^{\prime \prime}\).
IV. The femidiamerer of Venus (from the Doctor's Differtation) \(37 \frac{1^{\prime \prime}}{2}\).
V. The difference of the femidiameters of the Sun and Venus, \(15^{\prime} 12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}\).
VI. Their fum, \(16^{\prime} 27^{\frac{1^{\prime \prime}}{2}}\).
VII. The vifible angle which the tranfit-line makes with the ecliptic, \(8^{\circ} 31^{\prime}\); the ancular point (or defcending node) being \(1^{\circ} 6^{\prime} 18^{\prime \prime}\) eaft ward from. the Sun, as feen from the Earth; the defcending node being in \(\neq 14^{\circ} 29^{\prime} 37^{\prime \prime}\), as feen from the Sun; and the Sun in \(ᄑ 155^{\circ} 35^{\prime} 55^{\prime \prime}\), as feen from the Earth.
VIII. The angle which the Axis of Venus's vifible path makes with the axis of the ecliptic, \(8^{\circ} 31^{\prime}\); the fouthern half of that axis being on the left hand (or ealtward) of the axis of the ecliptic, as feen from the northern hemifphere of the Earth, which would be to the right hand, as feen from the Sun,
IX. The angle which the Earth's axis makes with the axis of the ecliptic, as feen from the Sun, \(60^{\circ}\); the fouthern half of the Earth's axis lying to the right hand of the axis of the ecliptic, in the projection, which would be to the left hand, as feen from the Sun.
X. The angle which the Earth's axis makes with the axis of Venus's vifible path, \(14^{\circ} 31^{\prime}\); viz. the fum of \(\mathrm{N}^{\circ}\) VIII, and IX.
XI. The true motion of Venus on the Sun, given by the tables as if it were feen from the Earth's center, 4 minutes of a degree in 60 minutes of time.
\(\mathrm{H}_{4} 3\)
32. Thefe elements being collected, make a fcale of any convenient length, as that of Fig. I. in Plate XVI. and divide it into 17 equal parts, each of which fhall be taken for a minute of a degree; then divide the minute next to the left hand into 60 equal parts for feconds, by diagonal lines, as in the figure. The reafon for dividing the fcale into 17 parts or minutes is, becaufe the fum of the femidiameters of the Sun and Venus exceeds 16 minutes of a degree. See \(\mathrm{N}^{0}\) VI.
33. Draw the right line \(A C G\) (Fig. 2.) for a fmall part of the ȩcliptic, and perpendicular to it draw the right line \(C v E\) for the axis of the ecliptic on the fouthern half of the Sun's difc.
34. Take the Sun's femidiameter, \(15^{\prime} 50^{\prime \prime}\), from the fcale with your compaffes; and with that extent, as a radius, fet one foot in \(C\) as a center, and deferibe the femicircle \(A E G\) for the fouthern half of the Sun's dife; becaule the tranfic is on that half of the Sun.
35. Take the geocentric latitude of Venus, \(9^{\prime}\) \(43^{4,}\), from the fale with your compafies; and fet that extent from \(C\) to \(v\), on the axis of the ecliptic: and the poine of fhall be the place of Venus's center on the Sun, at the tabular moment of her conjunction with the Sun.
36. Draw the right line \(C B D\), making an angle of. \(8^{\circ} 31^{\prime}\) with the axis of the ecliptic, toward the lefe hand; and this line flall reprefent the axis of Ventis's geocentric vifible path on the Sun.
37. Through the point of the conjunction 2 , in the axis of the ecliptic, draw the right line gti for the geocencric vifible path of Venus over the Sun's dife, at right angles to \(C B D\), the axis of her orbit, which axis will divade the line of her pach into two equal parts \(q t\) and \(t r\).
38. Take Venus's horary motion on the Sun, \(4^{\prime}\), from the fale with your compalfes; and with that extent make marks along the tranfit line qtio I he equal fpaces, from maik to mark, fhew how
much of that line Venus moves through in each hour, as feen from the Earth's center, during her continuance on the Sun's difc.
39. Divide each of thefe horary fpaces, from mark to mark, into 60 equal parts for minutes of time; and fet the hours to the proper marks in fuch a manner, that the true time of conjunction of the Sun and \(V\) enus, \(46 \frac{1}{4}\) minutes after \(V\) in the morning, may fall into the point \(v\), where the tranfitline cuts the axis of the ecliptic. So the point \(v\) fhall denote the place of Venus's center on the Sun, at the inftant of her ecliptical conjunction with the Sun, and \(t\) (in the axis \(C t D\) of her orbit) will be the middle of her tranfit; which is at 24 minutes after \(V\) in the morning, as feen from the Earth's center, and reckoned by the equal time at London.
40. Take the difference of the femidiameters of the Sun and Venus, \(15^{\prime} 12^{\prime \prime} \frac{1}{2}\), in your compaffes from the fcale; and with that extent, fetting one foot in the Sun's center \(C\), deferibe the arcs \(N\) and \(T\) with the other, croffing the tranfit-line in the points \(k\) and \(l\); which are the points on the Sun's dife that are hid by the center of Venus at the moments of her two internal contazs with the Sun's limb or edge, at \(M\) ard \(N\) : the former of the fe is the moment of Venus's total ingrefs on the Sun, as feen from the Earth's center, which is at 28 minutes after II in the morning, as reckoned at London: and the latter is the moment when her egreis from the Sun begins, as feen from the Earth's center, which is 20 minutes after Vill in the morning at London. The interval between thefe two contais is 5 hours 52 minutes.
41. The central ingrefs of Venus on the Sun is the moment when her center is on the Sun's caftern limb at \(u\), which is at 15 minutes after II in the morning; and her cencral egrefs from the Sun is the moment when her center is on the Sun'sweftern limb at \(w\); which is at 33 minutes after VIIl in
the morning, as feen from the Earth's center, and reckoned according to the time at London. The interval between thefe times is 6 hours \(\mathbf{1} 8\) minutes.
42. Take the fum of the femidiameters of the Sun and Venus, \(16^{\prime} 27^{\prime \prime} \frac{1}{2}\), in your compaffes from the fcale; and with that extent, fetting one foot in the Sun's center \(C\), defcribe the arcs \(\mathcal{Q}\) and \(R\) with the other, cutting the tranfit-line in the points \(q\) and \(r\), which are the points in open fpace (clear of the Sun) where the center of Venus is, at the noments of her two external contacts with the Sun's limb at \(S\) and \(W\); or the moments of the beginning and ending of the tranfit, as feen from the Earth's center; the former of which is at 3 minutes after II in the morning at London, and the latter at 45 mi nutes after VIII. The interval between thefe mo: ments is 6 hours 42 minutes.
43. Take the femidiameter of Venus \(37^{\prime \prime} \frac{1}{2}\), in your compaffes from the fcale: and with that extent as a radius, on the points \(q, k, t, l, r\), as centers, defcribe the circles \(H S, M I, O F, P N, W \Upsilon\), for the difc of Venus, at her firt contact at \(S\), her total ingrefs at \(M\), her place on the Sun at the middle of her tranfit, her beginning of egrefs at \(N_{2}\) and her laft contact at \(W\).
44. Thofe who have a mind to project the Earth's difc on the Sun, round the center \(C\), and to lay down the parallels of latitude and fituations of places thereon, according to Dr. Halley's method, may draw \(C f\) for the axis of the Earth, produced to the fouthern edge of the Sun at \(f\); and making an angle \(E C f\) of \(6^{\circ}\) with the axis of the ecliptic \(C E\) : but he will find it very difficult and uncertain to mark the places on that difc, unlefs he makes the Sun's femidiameter AC 15 inches at leaft: otherwife the line \(C f\) is of no ufe at all in this projec-rion.-The following method is better.
45. In Fig. 3. of Plate X VI. make the line \(A B\) of any convenient length, and divide it into 3 r equal parts, each of which may betaken for a fecond
of Venus's parallax either from or upon the Sun (her horizontal parallax from the Sun being fuppofed to be \(5 \mathrm{I}^{\prime \prime}\)); and taking the whole length \(A B\) in your compaffes, fet one foot in \(C\) (Fig. 4.) as a center, and defcribe the circle \(A E B D\) for the Earth'senlightended difc, whofe diameter is \(\sigma_{2}{ }^{\prime \prime}\), or double the horizontal parallax of Venus from the Sun. In this difc, draw \(A C B\) for a fmall part of the ecliptic, and at right angles to it draw \(E C D\) for the axis of the ecliptic. Draw alfo NCS both for the Earth's axis and univerfal folar meridian, making an angle of \(6^{\circ}\) with the axis of the ecliptic, as feen from the Sun; HCI for the axis of Venus's orbit, making an angle of \(8 \circ 31^{\prime}\) with ECD, the axis of the ecliptic; and laftly, VCO for a fmall part of Venus's orbit, at right angles to its axis.
46. This figure reprefents the Earth's enlightened dife, as feen from the Sun at the time of the tranfit. The parallels of latitude of London, the eattern mouth of the Ganges, Bencoolen, and the inand of St. Helena, are laid down in it, in the fame manner as they would appear to an obferver on the Sun, if they were really drawn in circles on the Earth's furface (like thofe on a common terreftrial globe) and could be vifible at fuch a dif-tance.-The method of delineating thefe parallels is the fame as already defcribedin the XIX th Chapter, for the conftruction of folar eclipfes.
47. The points where the curve-lines (called hour-circles) XI \(N, X N, \& c\). cut the parallels of latitude, or paths of the four places above mentioned, are the points at which the places themfelves would appear in the dife, as feen from the Sun, at thefe hours refpectively. When either places comes to the folar meridian NCS by the Earth's rotation on its axis, it is noon at thar place; and the difference, in abfulute time, berween the noon at that place and the noon at any other place, is in proportion to the difference of longitude of thefe two places, reckoning one hour for every i 5 degrees
degrees of longltude, and 4 minutes for each degree: : adding the time if the longitude be eaft, but fuhtracting it if the longitude be weft.
48. The diftance of either of thefe places from HCI (the axis of Venus's* orbit) at any hour or part of an hour, being meafured upon the feale \(A B\) in Fig. 3. will be equal to the parallax of Venus from the Sun in the direction of her path; and this parallax, being always contrary to the pofition of the place, is eaft ward as long as the place keeps on the left hand of the axis of the orbit of Venus, as feen from the Sun; and weftward when the place gers to the right hand of that axis. So that, to all the places which are pofited in the hemifphere \(H V I\) of the difc, at any given time, Venus has an eaftern parallax; but when the Earth's diurnal motion carries the fume places into the hemifphere \(H O I\), the parailax of Venus is weftward.
49. When Venus has a parallax toward the eaft, as feen from any given place un the Earth's furface, either at the cime of her total ingrefs or beginning of egrefs, as feen from the \(F\) arth's center; add the time anfivering to this parallax to the time of ingrefs or egrefs at the Larth's center, and the fum will be the time, as teen from the given place on the Earth's furface: but when the parallax is weft ward, fubtract the cime anfwering to this paral. lax from the time of total ingrefs or beginning of egrefs, as feen from the Earth's center, and the remainder, will be the time, as fren from the given place on the furface, fo far as it is afficted by this parallax. - The ceaton of this is plain to every one

\footnotetext{
- In a former edi:ion of chis, 1 made a mifake, in taking the parollax in longinde inittead of the parallax in the direction of the orbit of Venus; and the parallax in lantude infead of the porallax in lines perpendicular to her ornit. - But in this edition, thefe errors are correted; which make fome dimall differences in the quantitues of the parallaxes, and in the rimes depending on them; as will appear by comparing theta in this wite thofe in the former edicion.
}
who confiders, that an eaftern parallax keeps the planet back, and a weftern parallax carries it forward, with refpect to its true place or pofition, at any inftant of time, as feen from the Earth's center.
50. The nearef diftance of any given place from \(V C O\), the plane of Venus's orbit at any hour or part of an hour, being meafured on the fcale, iB in Fig. 3. will be equal to Venus's parallax in lines perpendicular to her parh; which is northward from the true line of her path on the Sun, as feen from the Earth's center, if the given place be on the fouth fide of the plane of her orbit \(V C O\) on the Earth's difc ; and the contrary, if the given place be on the north fide of that plane; that is, the parallax is always contrary to the fituation of the place on the Earth's dife, with refpect to the plane of Venus's orbit on it.
51. As the line of Venus's tranfit is on the fouthern hemifphere of the Sun's difc, it is plain that a northern parallax will caufe her to defcribe a longer line on the Sun, than the would if the had no fuch parallax; and a fouthern parallax will caufe her to defcribe a fhorter line on the Sun, than if the had no fuch parallax.-A Ad the longer this line is, rhe fooner will her total ingrefs be, and the later will be her beginning of egrefs; and juft the contrary, if the line be fhorter.- But to all places fituated on the north fide of the plane of her orbit, in the hemifphere VHO, the parallax in lines perpendicular to her orbit is fouth; and to all places fituated on the fouth fide of the plane of her orbit, in the hemifphere VIO, this parallax is north. Therefore, the line of the tranfit will be fhorter to all places in the hemifphere VHO , than it will be, as feen from the Earth's center, where there is no parallax; and longer to all places in the hemifphere V10. So that the time anfwering (1) this parallax muft be added to the time of total ingrefs, as feen from the Earch'scenter, and fubrracted from the beginning of egrefs, as feen from the

Earth's center, in order to have the true time of total ingrefs and beginning of egrefs as feen from places in the hemifphere VHO: and juft the reverfe for places in the hemifphere VIO. - It was proper to mention the fe circumftances, for the reader's more eafily conceiving the reafon of applying the times anfwering to the fe parallaxes in the fublequent part of this article: for it is their fum in fome cafes, and their difference in others, which being applied to the times of total ingrefs and beginning of egrefs, as feen from the Earth's center, that will give the times of the fe phenomena as feen from given places on the Earth's furface.
52. The angle which the Sun's femidiameter fubtends, as feen from the Earth, at all times of the year, has been fo weil afcertained by late obfervations, that we can make no doubt of its being \(15^{\prime} 50^{\prime \prime}\) on the day of the tranfit; and Venus's latitude has alfo been fo well afcertained at many different times of late, that we have very good reafon to believe it will be \(9^{\prime} 43^{\prime \prime}\) fouth of the Sun's center, at the time of her conjunction with the Sun. - If then her femidiameter at that time be \(37^{\prime \prime} \frac{1}{2}\) (as mentioned by Dr. Halley) it appears by the projection (Fig. 2.) that her total ingrefs on the Sun, as feen from the Earth's center, will be at 28 minutes after II in the morning (\(\$ 40\).), and her beginning of egrefs from the Sun will be \(2 a\) minutes after VIII, according to the time reckoned at London.
53. As the total ingrefs will not be vifible at London, we fhall not here trouble the reader about Venus's parallax at that rime. - But by projecting the fituation of London on the Earth's difc (Fig. 4.) for the time when the egrels begins, we find it will then be at \(l\), as feen from the Sun.

Draw \(l d\) parallel to Venus's orbir \(V C O\), and \(/ u\) perpendicular to it: the former is Venus's eaftern parallax in the direction of her path at the beginning of her egrefs from the fun, and the latter is
her fouthern parallax in a direction at right angles to her path at the fame time. Take thefe in your compaffes, and meafure them on the fale \(A B\) (Fig. 3.) and you will find the former parallax to be \(10^{113} \frac{3}{7}\), and the latter \(21^{\prime \prime} \frac{1}{2}\).
54. As Venus's true motion on the Sun is at the rate of a minutes of a degree in 60 minutes of time (See N० XI. of §3I.) fay, as 4 minutes of a degree is to 60 minutes of time, fo is \(10^{11 \frac{3}{4}}\) of a degree to 2 minutes 41 feconds of time; which being added to VIII hours 20 minutes (becaule this parallax is eaftward, §49.) gives VIII hours 22 minutes 4 I feconds, for the beginning of egrefs at London, as affected only by this parallax.- But as Venus has a fourhern parallax at that time, her beginning of egrefs will be fooner; for this parallax fhortens the line of her vifible tranfit at London.
55. Take the diftance \(C t\) (Fig. 2.), or neareft approach of the centers of the Sun and Venus, in your compaffes, and mealure it on the foale (Fig. I.), and it will be found to be \(9^{\prime} 36^{\prime \prime} \frac{1}{2}\); and as the parallax of Venus from the iun in a direction which is at right angles to her path is \(21^{\prime \prime} \frac{1}{2}\) fouth, add it to \(9^{\prime} 3^{6^{\prime \prime \frac{1}{2}},}\), and the fum will be \(9^{\prime} 5^{\prime \prime}\); which is to be taken from the fcale in Fig. I. and fet from \(C\) to \(L\) in Fig. 2. And then, if a line be drawn parallel to \(l l\), it will terminate at the point \(p\) in the are \(\mathcal{T}\), where Venus's center will be at the beginning of her egrefs, as leen from London*. - But as her center is at \(l\) when her egrefs begins as feen from the Earth's center, take Lp in your compaffes, and fetting that extent from \(t\) toward \(/\) on the central tranfit-line, you will find it to be 5 minutes fhorter than \(t\) :cherefore fuburact 5 minutes from V III hours 22 minutes 4 Ifeconds, and there will remain VIII
* The reafon why the line o \(L p, a B b, c t\), and \(: b\), which are the vifible tranfits at London, the Ganges mouth, Bencoolen, and St. Helena, are not parallel to the central tranfit line \(k f l\), is, becaufe the parallaxes in latitude are different at the ciones of ingrefs and egrefs, as feen from each of thefe places. The method of drawing thefe lines will be thewn by and by.
hours 17 minutes 41 feconds for the vifible beginning of egrefs in the morning at London.
56. At \(V\) hours 24 minutes (which is the middle of the tranfit, as feen from the Earth's center) London will be at \(L\) of the Earth's difc (Fig. 4.) as feen from the Sun. The parallax \(L a\) of Venus from the Sun in the direction of her path is then \(12^{\prime \prime} \frac{1}{2}\); by which, working as above directed, we find the middle of the tranfit, as feen from London, will be at \(V\) hours 20 minutes 53 feconds. -This is not affected by \(L t\) the parallax at right angles to the path of Venus. - Bur \(L t\) meafures \(27^{\prime \prime}\) on the fcale \(A B\) (Fig. 3.): therefure take \(27^{\prime \prime}\) from the fcale in Fig. I. and fet it from th \(L\), on the axis of Venus's path in Fig. 2. and laying a ruler to the point \(L\), and the above found point of egrefs \(p\), draw oLp for the line of the tranfit as feen from London.
57. The eaftern mouth of the river Ganges is 89 degrees eaft from the meridian of London; and therefore, when the time at London is 28 minutes after II in the moring (\(\$ 40\).) it is 24 minutes paft VIII in the morning (by §47) at the mouth of the Ganges; and when it is 20 minutes paft VIII in the morning at London (\(\$ 40\).) it is 16 minures paft II in the afternoon at the Ganges. Therefore, by projecting that place upon the Earth's difc, as feen from the Sun, it will be at \(G\) (in Fig. 4.) at the time of Venus's total ingrefs, as feen from the Earth's center, and at \(g\) when her egrefs begins.

Draw Ge and \(g r\) parallel to the orbit of Venus VCO, and meafure them on the fcale \(A B\) in Fig. 3. the former will be \(2 \mathrm{I}^{\prime \prime}\) for Venus's eaftern parallax in thedirection of her path, at the above-mentioned time of her total ingrefs, and the latter will be \(16^{\prime \prime \frac{5}{4}}\) for her weftern parallax at the time when her egrefs begins. -The former parallax gives 5 minutes 15 feconds of time (by the analogy in \$54.) to be added to VIII hours 24 minutes, and the latter parallax gives 4 minutes if feconds to be fubtracted from 11 hours 16 minutes; by which we have VIII
hours
hours 29 minutes 15 feconds, for the time of total ingrefs, as feen from the banks of the Ganges, and II hours it minutes 49 feconds for the beginning of egrefs, as effected by thefe parallaxes.

Draw Gf perpendicular to Venus's orbit VOC, and by meafurement on the fale \(A B\) (Fig. 3.) it will be found to contain \(10^{\prime \prime}\) : take \(10^{\prime \prime}\) from the fcale in Fig. I. and find, by trials, a point \(c\), in the \(\operatorname{arc} N\), where, if one foor of the compaffes be placed, the other will jutt touch the central tranfit line \(k l\). Take the neareft diftance from this point \(c\) to \(C L\), the axis of Venus's orbit, and applying it from \(t\) toward \(k\), you will find it fall a minute fhort of \(k\); which Thews, that Venus's parallax in this dirction fhortens the beginning of the line of her vilible tranfit at the Ganges by one minute of time. Therefore, as this makes the vifible ingrefs a minute later, add one minute to the above VIll hours 29 minutes 15 feconds, and it will give VIII hours 30 minues 15 feconds for the time of total ingrefs in the morning, as feen from the eaftern mouth of the Ganges. At the beginning of egrefs, the parallax \(g p\) in the fame direction is \(2^{\prime \prime} \frac{x}{2}\) (by meafurement on the fale \(A B\)), which will protract the beginning of egrefs by about 30 feconds of time, and mult therefore be added to the above II hours il minutes 49 feconds, which will make the vifible beginning of egrefs to be at II hours 12 minutes 19 feconds in the afternoon.
58. Bencoolen is 102 degrees eaft from the meridian of London; and therefore, when the time is 28 minutes paft II in the morning at London, it is 16 minutes paft IX in the morning at Bencoolen; and when it is 20 minutes paft VIII in the morning at London, it is 8 minutes paft III in the afternoon at Bencoolen. Therefore, in Fig. 4. Bencoolen will be at \(B\) at the time of Venus's total ingrefs, as feen from the Earth's center; and at \(b\) when her egrefs begins.

Draw

Draw \(B\) iand \(b k\) parallel to Venus's orbir \(V C O\), and meafure them on the fcale : the former will be found to be \(22^{\prime \prime}\) for Venus's eaftern parallax in the direction of her path at the time of her total ingrefs; and the latter to be \(19^{\prime \prime} \frac{1}{2}\) for her weftern parallax in the fame direction when her egrefs begins, as feen from the Earth's center. The firf of there parallaxes gives 5 minutes 30 feconds (by the analogy in § 54.) to be added to IX hours 16 mi nutes, and the latter parallax gives 4 minutes 52 fes conds to be fubtracted from III hours 8 minutes; whence we have 1 X hours 21 minues 30 feconds for the time of total ingrefs at Bencoolen: and III hours and 3 minutes 8 feconds for the time when the egrefs begins there, as affected by thefe two parallaxes.
59. Draw \(B v\) and \(b m\) perpendiculat to Venus's orbit \(V C O\), and neeafure them on the fcale \(A B\) : the former will be \(5^{\prime \prime}\) for Venus's northern parallax in a direction perpendicular to her pach, as feen from Bencoolen, at the time of her cotal ingrefs; and the latter will be \(15^{\prime \prime} \frac{1}{2}\) for her northern parallax in that direction when her egrefs begins. Take thefe parallaxes from the fcale, Fig. I in your compaffes, and find, by trials, two points in the arcs \(N\) and \(\tau\) (Fig. 2.) where if one foot of the compaffes be placed, the other will touch the central tranfit line kl : draw a line from \(a\) to \(b\), for the line of Venus's tranfit as feen from Bencoolen; the center of Venus being at \(a\), as feen from Bencoolen, at the moment of her tutal ingrefs; and at \(b\) at the moment when her egrefs begins.

But as feen from the Earth's center, the center of \(V\) enus is at \(k\) in the former cale, and at \(l\) in the later: fo that we find the line of the tranfit is longer as feen from Beizcoolen than as seen from the Earth's center, which is the effeet of Venus's northern parallax. - Take \(B\) a in your compaffes, and fetting that extent backward from \(t\) toward \(g\), on the central tranfit-Jine, you will find it will reach two minutes beyond \(k\) : and taking the extent \(B b\)
in your compaffes, and fetting it forward from \(t\) toward \(w\), on the central tranfit-line, it will be found to reach 3 minutes beyond \(l\). Confequently, if we fubtract 2 minutes from IX hours 21 minutes 30 feconds (above found), we have IX hours 19 mi nutes 30 feconds, in the morning, for the time of total ingrefs, as feen from Bencoolen: and if we add 3 minutes to the above found III hours 3 minutes 8 feconds, we fhall have 111 hours 6 minutes 8 feconds afternoon, for the time when the egrefs begins, as feen from Bencoolen.
60. The whole duration of the tranfit, from the total ingrefs to the beginning of egrefs, as feen from the Earch's center, is 5 hours 52 minutes (by \(\$ 40\).) but the whole duration from the total ingrefs to the beginning of egrefs, as feen from Bencoolen, is only 5 hours 46 minutes 38 feconds; which is 5 minutes 22 feconds lefs than as feen from the Earth's center: and this 5 minutes 22 feconds is the whole effect of the parallaxes (both in longitude and latitude) on the duration of the tranfit at Bencoolen.

But the duration, as feen at the mouth of the Ganges, from ingrefs to egrefs, is ftill lefs; for it is only 5 hours 42 minutes 4 feconds: which is 9 minutes 56 feconds lefs than as feen from the Earth's center, and 4 minutes 34 feconds lefs than as feen at Bencooleri.
61. The illand of St. Helena (to which only a fmall part of the tranfit is vifible at the end) will be at \(H\) (as in Fig. 4.) when the egrefs begins as feen from the Earth's center. And fince the middle of that inland is \(6^{\circ}\) weft from the meridian of London, and the faid egrefs begins when the time at London is 20 minutes palt VIII in the morning, it will then be only 56 minutes part VII in the morning at St Helene.

Draw Hn parallel to Venus's orbit VCO, and Ho perpendicular to it, and by meafuring them on the tcale \(A B\) (Fig. 3.) the former will be found to amount to \(29^{\prime \prime}\) for Venus's eaftern parallax in the
direction of her path, as feen from St. Helena, when her egrefs begins, as feen from the Earth's centet; and the latter to be \(6^{\prime \prime}\) for her northern parallax in a direction at right angles to her path.

By the analogy in \$ 54 , the parallax in the direction of the path of Venus gives 10 minutes. \(2 \mathrm{fe}-\) conds of time; which being added (on account of its being eaftward) to VII hours 56 minutes, gives VIII hours 6 minutes 2 feconds for the beginning of egrefs at St. Helena, as affected by this parallax. -But \(6^{\prime \prime}\) of parallax in a perpendiculardirection to her path (applied as in the cafe of Bencoolen) lengthens out the end of the tranfit-line by one minute; which being added to VIII hours 6 minutes \(2 \mathrm{fe}-\) conds, gives VIII hours 7 minutes 2 feconds for the beginning of egrefs, as feen from St. Helena.
óz. We fhall now collect the above-mentioned times into a fmall table, that they may be feen as once, as follows: Mfignifies morning, \(A\) afternoon. Totalingrefs. Beg.ofegrefs. Daration. H. M. S. H. M. S. H. M. S.
:

63. The times at the three laft-mentioned places are reduced to the meridian of London, by fubtracting 5 hours 56 minutes from the times of ingrefs and egrefs at the Ganges; 6 hours 48 mi nutes from the times at Bencoolen; and adding 24

\footnotetext{
*This duration, as feen from the Earth's center, is on fuppofition that she femidiameter of Venus would be found equal to \(37 \frac{11}{2}\), on the Su:'s dife, as ftated by Dr. Halley (fee Art. V. \$31.) to which all the other durations are accommodated. But, from later obfervations, is is highly probable, that the femidiameter of Venus will be found not to exceed \(30^{\prime \prime}\) on the Sun; and if fo, the duration between the two internal contacts, as feen from the Earth's center, will be 5 hoors 5 * minu:es; and the duration, as feen from the above mentioned places, will be lengethened very nearly in the fame proportion.
}
minutes to the time of beginning of egrefs at St. Heena: and being thus reduced, they are as follows:
\begin{tabular}{|c|c|c|}
\hline & Totalingrefs. H. M. S. & \begin{tabular}{l}
Beg.ofegres. \\
H. M. S.
\end{tabular} \\
\hline Timesat & Gangesmouth II \({ }_{34} 15 \mathrm{M}\) & VIII 1619 M) Duram \\
\hline Lordos & \{ Bencoolen - - II 3130 M & VIII 188 M (tions as \\
\hline for & St. Helena - InvifibleM & VIII 312 M) above. \\
\hline
\end{tabular}
64. All this is on fuppofition, that we have the true longitudes of the three laft-mentioned places, that the Sun's horizontal parallax is \(12^{\prime \prime} \frac{1}{2}\) that the true latitude of Venus is given, and that her femidiameter will fubtend an angle of \(37^{\prime \prime \frac{1}{2}}\) on the Sun's difc.

As for the longitudes, we mult fuppofe them true, until the obfervers afcertain them, which is a very important part of their bufinefs; and without which they can by no means find the interval of abfolute time that elapfeth between either the ingrefs or egrefs, as feen from any two given places: and there is much greater dependance to be had on this elaple, than upon the whole contraction of duration at any given place, as it will undoubredly afford a furer bafis for determining the Sun's pasallax.
65. I have good reafon to believe, that the latitude of Venus, as given in \(\$ 31\), will be found by obfervation to be very near the truth; but that the time of conjunction there mentioned will be found later than the true time by almoft 5 minutes; that Venus's femidiameter will fubtend an angle of no more than \(30^{\prime \prime}\) on the Sun's difc; and that the middle of her tranfir, as feen from the Earth's center, will be at 24 minutes after \(V\) in the morning, as reckoned by the equal time at London.
66. Suberaft VIII hours 17 minutes 41 feconds, the time when the egrefs begins at London, from VIII hours 3 I minutes 2 feconds, the time reckoned ai L. London when the egrefs begins at St. Helena, and
there will remain 13 minutes 21 feconds (or 801 feconds) for their difference, or elapfe, in abfolute time, between the beginning of egrefs, as feen from thefe two places.

Divide Bor feconds by the Sun's parallax \(\mathrm{I}_{2}{ }^{\prime \prime} \frac{1}{2}\), and the quotient will be 64 feconds and a fmall fraction. So that for each fecond of a degree in the Sun's horizontal parallax (fuppofing it to be \(12^{\prime \prime} \frac{1}{2}\)) there will be a difference or tlapfe of 64 fe conds of abfolute time between the beginning of egrefs as feen from London, and as feen from St. Heleno; and confequently 32 feconds of time for every half fecond of the Sun's parallax; 16 feconds of time for every fourth part of a fecond of the Sun's parallax; 8 feconds of time for the eighth part of a fecond of the Sun's parallax; and full 4 feconds for a fixteenth part of the Sun's parallax. For, in fo fmall an angle as that of the Sun's parallax, the arc is not fenfibly different from either its fine or its tangent: and therefore, the quantity of this parallax is in direct proportion to the abfolute difference in the time of egrefs arifing from it, at different parts of the Earth.
67. Therefore, when this difference is afcertained by good obfervations, made at different places, and compared together, the true quantity of the Sun's parallax will be very nearly determined. For, fince it may be prefumed that the beginning of egrefs can be obferved within 2 feconds of its real time, the Sun's parallax may be then found within the \(32 d\) part of a fecond of its true quantity; and coniequently, his diftance may be found within a 400th'part of the whole, provided his parallax be not lefs than \(12^{\prime \prime} \frac{1}{2}\); for 32 times \(12 \frac{1}{2}\) is 400 .
68. But fince Dr. Halley has affured us, that he had obferved the two internal contacts of the planet Mercury with the Sun's edge fo exactly, as not to err one fecond in the time, we may well imagine that the internal contacts of Venus with the Sun may be oblerved with as
great accuracy. So that we may hope to have the abfolute interval beween the moments of her beginning of egrefs, as feen from London and from St. Helena, true to a fecond of time; and if fo, the Sun's parallax may be determined to the 64th part of a fecond, provided it be not lefs than \(12^{\prime \prime \frac{1}{2}}\) : and confequently his diftance may be found, with in its 800 th part; for 64 times \(12^{\frac{1}{t}}\) is 800 : which is ftill nearer the truth than Dr. Halley expected it might be found, by obferving the whole duration of the tranfit in the Eaft-Indies and at PortNelfon. So that our prefent Aftronomers have judicioully refolved to improve thé Doctor's method, by taking only the interval between the abfolute times of its ending at different places. If the Sun's parallax be greater or lefs than \(12^{\prime \prime} \frac{1}{2}\), the elapfe or difference of abfolute time between the beginning of egrefs at London and St. Helena, will be found by obfervation to be greater or lefs than 8or feconds accordingly.
69. There will alfo be a great difference between the abfolute times of egrefs at St. Helena and the northern parts of Rufia, which would make thefe places very proper for obférvation. The difference between them at Tobol/k in Siberia and at St. Helena will be i i minutes, according to De L'IsLe's map: at Archangel it will be but about 40 feconds lefs than at Tobol/k; and only a minute and a quarter lefs at Peterfourg, even if the Sun's parallax be no more than \(10^{\prime \prime \frac{1}{2}}\). At Wardbus the fame advantage would nearly be gained as at Tobolk; but if the obfervers could go ftill farther to the eaft, as to \(Y_{a}\) kout \(/ k\) in Siberia, the advantage would be fill. greater: for, as M. De L'IsLe very juftly obferves, in a memoir prefented to the French king with his map of the tranfit, the difference of time between Venus's egrefs from the Sun at \(Y\) akout \(/ k\) and at the Cape of Good Hope will be \(13 \frac{1}{2}\) minutes.
70. This method requires that the longitude of each place of obfervation be afcertained to the
greatef degree of nicety, and that each obferver's clock be exactly regulated (.) the equal time at his place: for without thefe particulars it would be impoffible for the obfervers to reduce the times to thofe which are reckoned under any given meridian; and without reducing the oblerved times of egrefs at different places to the time at fome given place, the abfolute time that elapleth between the egrefs at one place and at another could not be found. But the longitudes may be found, by obferving the eclipfes of Jupirer's fatellites; and a true meridian, for regulating the clock, to the time at any place, may be had, by obferving when any given ftar, within 20 or 30 degrees of the pole, is ftationary, with regard to its azimurh, on the eaft and weft fides of the pole; the pole itfelf being the middle point between thefe two ftationary pofitions of the ftar. And it is not material for the obfervers to know exactly either the true angular meafure of the Sun's diameter, or of Venus's, in this cafe; for whatever their diameters be, it will make no fenfible difference in the obferved interval between the fame contact, as feen from different places.

71 . In the geometrical conftruction of tranfits, the fcale \(A B\) (Fig. 3. of Plate XV1.) may be divided into any given number of equal parts, anfwering to any affumed quantity of Venus's horizontal parallax from the Sun (which is always the difference between the horizontal parallax of Venus and that of the Sun), provided the whole length of the fcale beequal to the femidiameter of the Earh's difc in Fig. 4.- Thus, if we fuppofe Venus's horizontal parallax from the Sun to be only \(26^{\prime \prime}\) (inftead of \(3 \mathrm{I}^{\prime \prime}\)), in which cafe the Sun's horizontal parallax muft be \(10^{\prime \prime} \cdot 3493\), as in \(§ 20\), the reft of the projection will anfwer to that fcale: as \(C D\), which contains only 26 equal parrs, is the fame length as \(A B\), which contains 3 I. And by working in all other refpects as taught from \(\$ 45\) to
\(\geqslant\)
-

\$62, you will find the times of total ingrefs and beginning of egrels; and confequently, the duration of the tranfit at any given place, which muft refult from fuch a parallax.
72. In projections of this kind, it may be eafily conceived, that a right line paffing continually through the center of Venus, and a given point of the Earth, and produced to the Sun's difc, will mark the path of Venus on the Sun, as feen from the given point of the Earth: and in this there are three cafes. r. When the given point is the Earth's center, at which there is no parallax, either in longitude or latitude. 2. When the given point is one of the poles, where there is no parallax of longitude; but a parallax of latitude, whefe quantity is eafily determined, by letting fall a perpendicular from the pole upon the plane of the ecliptic, and letting off the parallax of latitude on this perpendicular: and here, the polar tranfit-lines will be parallel to the central, as the poles have no motion arifing from the Earth's diurnal rotation. 3. The latt cale is, when the given point of the Earth is any point of its furface, whofe latitude is lefs than 90 degrees: then there is a parallax in latitude proporcional to the perpendicular let fall upon the abovefaid plane, from the given point; and a parallax in longitude proportional to the perpendicular let fall upon the axis of that plane, from the faid given point. And the effect of this laft will be to alter the tranfit-line, both in pofition and length; and will prevent its being parallel to the central tranfit-line, unlefs when its axis and the axis of the Earth coincide, as feen from the Sun; which is a thing that may not happen in many ages.

\section*{ARTICLE VI.}

Concerning the map of the tranfit. Plate XVII.
73. The citle of this map, and the lines drawn upon it, together with the words annexed to thefe lines, and the numbers (hours and minutes) on the dotted lines, explain the whole of it fo well, that no farther defcription feems requifite.
74. So far as I can examine the map by a good globe, the black curve lines are in general pretty well laid down, for fhewing at what places the tranfit will begin, or end, at fun-rifing or fun-fetting, to all thofe places through which they are drawn, according to the times mentioned in the map. Only I queftion much whether the tranfit will begin at fun-rife to any place in Africa, that is weft of che Red Sea; and am pretty certain that the Sun will not be rifen to the northernmoft part of Madagafor when the tranfit begins, as M. De L'Isle reckons the firt contact of Venus with the Sun to be the beginning of the tranfit. So that the line which fhews the entrance of Venus in the Sun's dife at fun-rifing, feems to be a little too far welt in the map, at all places which are fouth of -1fia Minor: but in Europe, I think it is very well.
75. In delineating this map, I had M. De L'Is le's map of the tranfir before me. And the only difference between his map and this, is, I. That in his map, the times are computed to the meridian of Paris; in this they are reduced to the meridian of London. 2. I have changed his meridional projection into that of the equatorial ; by which, I apprehend, that the black curve lines, fhewing at what places the tranfit begins, or ends, with the rifing or fetting Sun, appear more natural to the eye, and are more fully fieen at once, than in the map from which I copied; for in that map the lines are interrupted and-broke in the meridian
that divides the hemifpheres; and the places where they fhould join cannot be perceived fo readily by thofe who are not well fkilled in the nature of ftereographical projections.-The like may be faid of many of the dotted curve lines, on which are expreffed the hours and minutes of the beginning or ending of the tranfit, which are the abfolute times at thefe places through which the lines are drawn, computed to the meridian of London.

\section*{A R T I C L E VII.}

Coiltaining an Account of Mr. Horrox's Obfervation of the Tranjit of Venus over the Sun, in the Year 1639; as it is publifhed in the Annual Regifter for the Year 1761.
76. When Kepler firft conftructed his (the Rudolphine) Tables upon the obfervations of Tycho, he foon became fenfible that the Planets Mercury and Venus would fometimes pafs over the Sun's difc; and he predicted two tranfits of Venus, one for the year 1631 , and the other for 1761 , in a tract publifhed at Leipfick in 1629, entitled, Adanonitio ad Aftronomos, Eic. Kepler died fome days before the tranfit in 1631 , which he had predicted was to have happened. Gafiendi looked for it at Paris, but in vain (fee Mercurius in Sole vifus, \(\mathcal{B}\) Venus invifa). In effect, the imperfect fate of the Kudolphine Tables was the caufe that the tranfit was expected in 163 I , when none could be obferved; and thofe very tables did not give reafon to expect one in 1639 , when one was really obferved:

When our illuftrious countryman Mr. Horrox firft applied himfelf io Aftronomy, he computed Ephemerides for feveral years, from I anflergius's Tables. After conimuing his labours for fome time, he was enabled to difcover the imperfection of thefe tables; upon which he laid afide his work, intending
intending to determine the pofitions of the flars from his own obfervations. But that the former part of his time fpent in calculating from Lanfbergius might not be thrown away, he made ufe or his Ephemerides to point out to him the fituations of the planets. From hence he forefaw when their conjunctions, their appulfes to the fixed ftars, and the moft remarkable phænomena in the heavens would happen; and prepared himfelf with the greateft care to obferve them.

Hence he was encouraged to wair for the important obfervation of the tranfit of Venus in the year 1639; and no longer thought the former part of his time mil- fpent, fince his attention to Lanjergius's Tables had enabled him to difcover that the tranfit would certainly happen on the 24th of November. However, as there Tables had fo often deceived him, he was unwilling to rely on them entirely, but confulted other Tables, and particularly thofe of Kepler; accordingly, in a letter to his friend Williom Crabtree of Maichefter, dated Hool, OEtober \(26,16,39\), he communicated his difcovery to him, and earneftly defired him to make whatever obfervation he poffibly could with his telefcope, particularly to meafure the diameter of the planet Venus; which, according to Kepler, would amount to 7 minutes of a degree, and according to Lamfbergius to 11 minutes; but which, according to his own proportion; he expected it would hardly exceed one minute. He adds, that according to Kepler, the conjunction will be November 24, 1639, at 8 hours i minute A. M. at Manchefer, and that the planet's lacitude would be \(14^{\prime} 10^{\prime \prime}\) fouth; bur according to his own corrections, he expected it to happenat 3 hours \(57 . \mathrm{min}\). P. M. at Manchefer, with \(10^{\prime}\) fouth latitude. But becaufe a fmall alteration in Kepler's numbers would greatly alter the time of conjunction, and the quantity of the planet's latitude, he advifes to watch the whole day, and even on the preceding afternoon, and the morning
of the 25 th, though he was entirely of opinion that the tranfit would happen on the 24 th.

After having fully weighed and examined the feveral methods of obferving this uncommon phænomenon, he determined to tranfmit the Sun's image through a telefcope into a dark chamber, rather than through a naked aperture, a method greatly commended by Kepler; for the Sun's image is not given fufficiently large and diftinct by the latter, unlefs at a very great diftance from the aperture, which the narrownefs of his fituation would not allow of; nor would Venus's diameter be well defined, unlefs the aperture were very fmall; whereas his telefcope, which rendered the folar fpots diftirictly vifible, would fhew him Venus's diameter well defined, and enable him to divide the Sun's limb more accurately.

He defcribed a circle on paper which nearly equalled fix inches, the narrownefs of the place not allowing a larger fize; but even this fize admitted divifions fufficiently accurate. He divided the circumference into 360 degrees, and the diameter into 30 equal parts, each of which were fubdivided into 4, and the whole therefore into 120 . The fubdivifion might have ftill been carried farther, bur he trufted rather to the accuracy and nicenefs of his eye.

When the time of obfervation drew near, he adjufted the apparatus, and caufed the Sun's diftinct image exactly to fill the circle on the paper ; and though he could not expect the planet to enter upon the Sun's dife before three o'clock in the afternoon of the 24th, from his own corrected numbers, upon which he chiefly relied; yet, becaufe the calculations in general from other tables gave the time of conjunction much fooner, and lome even on the 23 d , he obferved the Sun from the time of its rifing to nine o'clock; and again, a litite before ten; ar noon, and at one in the afternoon, being called in the interyals to bufinefs of
the higheft moment, which he could not neglect. But in all thefe times he faw nothing on the Sun's face, except one finall fpot, which he had feen on the preceding day; and which alfo he afterward faw on fome of the following days.

But at 3 hours 15 minutes in the afternoon, which was the firft opportunity he had of repeating his obfervations, the clouds were entirely difperfed and invited him to feize this favourable occafion, which feemed to be providentially thrown in his way; for he then beheld the molt agreeable fight, a fpot, which had been the object of his moft fanguine wifhes, of an unufual fize, and of a perfectly circular hape, juft wholly entered upon the Sun's dife on the left fide; fo that the limbs of the Sun and Venus perfecaly coincided in the very point of contact. He was immediately fenfible that this \({ }^{f}\) pot was the planet Venus, and applied himfelf with the utmoft care to profecute his obfervations.

And, Firf, with regard to the inclination, he found, by means of a diameter of the circle fer perpendicular to the horizon, the plane of the circle being fomewhat reclined on account of the Sun's altitude, that Venus had wholly entered upon the Sun's dife, at 3 hours 15 minutes, at about \(62^{\circ}\), \(30^{\prime}\) (certainly between \(60^{\circ}\) and \(65^{\circ}\)) from the vertex toward the right hand. (Thefe were the appearances within the dark chamber, where the Sun's image and motion of the planet on it were borh inverted and reverfed.) And this inclination continued conftant, at leaft to all fenfe, till he had finified the whole of his obfervation.

Secondiy, The diftances obferved afterward between the centers of the Sun and Venus were as follows; At 3 hours 15 minutes by the clock, the diltance was \(14^{\prime} 24^{\prime \prime \prime}\); at 3 hours 35 minutes, the diftance was \(13^{\prime}, 30^{\prime \prime \prime}\); at 3 hours 45 minutes, the diftance was \(13^{\prime} 0^{\prime \prime}\). The apparent time of funfetting was at 3 hours 50 minutes - the true time

3 hours 45 minutes-refraction keeping the Sun above the horizon for the fpace of 5 minutes.

Thirdly, He found Venus's diameter, by repeated obfervations, to exceed a thirtieth part of the Sun's diameter, by a fixth, or at moft a fifth fubdivifion. -The diameter therefore of the Sun to that of Venus may be expreffed, as 30 to 1.12. It certainly did not amount to 1. 30. nor yet to r.20. And this was found, by obferving Venus as well when near the Sun's limb, as when farther removed from it.

The place where this obfervation was made, was an obfcure village called Hool, about 15 miles northward of Liverpool. The latitude of Liverpool had been often determined by Horrox to be \(53^{\circ} 20^{\prime}\); and therefore, that of Hool will be \(53^{\circ} 35^{\prime}\). The longitude of both feemed to him to be about \(22^{\circ}\) \(30^{\prime}\) from the Fortunate Iflands: that is \(14^{\circ} 15^{\prime}\) to the weft of Uraiiburg.

Thefe were all the obfervations which the fhortnefs of the time allowed him to make upon this moft remarkable and uncommon fight; all that could be done, however, in fo fmall a fpace of time, he very happily executed; and fcarcely any thing farther remained for him to defire. In regard to the inclination alone, he could not obtain the utmoft exactnefs; for it was extremely difficult, from the Sun's rapid motion, to obferve it to any certainty within the degree. And he ingenuoully con feffes that he neitherdid, nor could poffibly perform it. The reft are very much to be depended upon; and as exact as he could wifh.

Mr. Crabtree, at Manchefter, whom Mr. Horrox had defired to obferve this tranfit, and who in mathematical knowledge was inferior to few, very readily complied with his friend's requeft; bur the flyy was very unfavourable to him, and he had only one fight of Venus on the Sun's difc, which was about 3 hours 35 minutes by the clock; the Sun then, for the firf time, breaking out from the clouds;
clouds; at which time, he fketched out Venus'a fituation upon paper, which Horrox found to coincide with his own obfervations.

Mr. Horrox, in his treatife on this fubject, publifhed by Hevelius, and from which almoft the whole of this account has been collected, hopes for pardon from the aftonomical world, for not making his intelligence more publick; but his difcovery was made too late. He is defirous however, in the fpirit of a true philofopher, that other aftronomers were happy enough to obferve it, who might either confirm or correct his obfervations. But fuch confidence was repofed in the tables at that time, that it does not appear that this tranfit of Venus was obferved by any befides our two ingenious countrymen, who profecuted their aftronomical ftudies with fuch eagernefs and precifion, that they mult very foon have brought their favourite fcience to a degree of perfection unknown at thofe times. But unfortunately Mr. Horrox died on the 3 d of Fanuary 1640-1, about the age of 25, jutt after he had put the laft hand to his treatife, entitled Venus in Sole vifa, in which he fhews himfelf to have had a more accurate knowledge of the dimenfions of the Solar Syftem than his learned commentator Hevelius-So far the innual Regifter.

In the year \(16 \mathrm{y}^{\text {I }}\), Dr. Hafley gave in a paper upon the tranfit of Venus (See Lowthorpe's A bridgment of the Philofophical Tranlactions, page 434.), in which he obferves, from the tables then in ufe, that Venus returns to a conjunction with the Sun in her afcending node in a period of 18 years, wanting 2 days 10 hours \(52 \frac{1}{2}\) minutes; but that in the fecond conjunction the will have got \(24^{\prime} 41^{\prime \prime}\) farther to the fouth than in the preceding. That after a period of 235 y ars 2 hours 10 minutes 9 feconds, The returns to a conjunction more to the north by \(11^{\prime} 33^{\prime \prime}\); and after 243 years, wanting 43

\footnotetext{
* See the Connoificric des Temps for A.D. 1761:
}
minutes
minutes in a point more to the fouth by \(13^{\prime} 8^{\prime \prime}\). But if the fecond conjunetion is in the year next after leap-year, it will be a day later.

The intervalsof the conjunctions at the defcending node are fomewhat different. The fecond happens in a period of 8 years, wanting 2 days 6 hours 55 minutes, Venus being got more to the north by \(19^{\prime} 5^{\prime \prime}\). After 235 years 2 days 8 hours is minutes, fhe is \(9^{\prime} 21^{\prime \prime}\) more foutherly: only, if the firf year is a biffextile, a day mult be added. And after 243 years \(O\) days 1 hour 23 minutes, the conjunction happens \(10^{\prime} 37^{\prime \prime}\) more to the north; and a day later, if the firlt year was biffextile. It is fuppofed, as in the old fyle, that all the centurial years are biffextiles.

Hence, Dr. Halley finds the years in which a tranfit may happen at the afcending node, in the month of Navember (old ftile) to be thefe- 318 , 1161, 1396, 1631, 1639, 1874, 2 109, 2117 : and the tranfirs in the month of May (old file) at the defcending node, to be in thele years- 1048,1283 , 1518, 1526, 1761, 1769, 1996, 2004.

In the firft cafe, Dr. Halley makes the vifible inclination of Venus's orbit to be \(9^{\circ} 5^{\prime}\), and her horary motion on the Sun \(4^{\prime} 7^{\prime \prime}\). In the latter, he finds her vifible inclination to be \(8^{\prime} 28^{\prime \prime}\), and her horary motion \(4^{\prime} 0^{\prime \prime}\). In either cale the greatelt pomble duration of a tranfit is 7 hours 56 minutes.

Dr. Halley could even then conclude, that if the interval in time between the two interior contacts of Venus with the Sun could be meafured to the exactnefs of a fecond, in two places properly fituated, the Sun's parallax might be determined within its 500 dch part. But ficveral years after, he explained this affair more fully, in a paper concerning the cranfic of Venus in the year 1761 ; which was publifhed in the Philofophical Tranfastions, and of which the third of the preceding articles is a trannation; the original havinis been wrote in Latin by the Doctor.

\section*{A R T I C L E VIII.}

Containing a floort account of fome observations of the Tranfit of Venus, A. D. 1761 , June 6th, Nere Stile; and the diftances of the Planets from the Sun, as deduced from thofe obfervations.
Early in the morning, when every aftronomer was prepared for obferving the tranfit, it unluckily happened, that both at London, and the Royal Obfervatory at Greenwich, the fky was fo overcaft with clouds, as to render it doubtful whether any part of the tranfit fhould be feen:-and it was \(3^{8}\) minutes 21 feconds paft 7 o'clock (apparent time) at Greenwich, when the Rev. Mr. Blifs our Aftronomer Royal, firft faw Venus on the Sun; at which inftant, the center of Venus preceded the Sun's center by \(6^{\prime} 18^{\prime \prime} .9\) of right aícenfion, and was fouth of the Sun's center by \(11^{\prime} 42^{\prime \prime} .1\) of declination. From that time to the beginning of egrefs the Doctor made feveral obfervations, both of the difference of right afcenfion and declination of the centers of the Sun and Venus; and at laft found the beginning of egrefs, or inftant of the internal contact of Venus with the Sun's limb, to be at 8 hours 19 minutes o feconds apparent time.- From the Doctor's own obfervations, and thofe which were made at Shirburn by another Gentleman, he has computed, that the mean time at Greenwich of the ecliptical conjunction of the Sun and Venus was at 51 minutes 20 feconds after 5 o'clock in the morning; that the place of the Sun and Venus was II ((-emini) \(15^{\circ} 36^{\prime} 33^{\prime \prime}\); and that the geocentric latitude of Venus was \(9^{\prime} 44^{\prime \prime} \cdot 9\) fouth.her horary motion from the Sun \(3^{\prime} 57^{\prime \prime} \cdot 13\) retrograde; -and the angle then formed by the axis of the equator, and the axis of the ecliptic, was \(6^{\circ}\) \(9^{\prime} 34^{\prime \prime}\), decrealing hourly I minute of a degree. By the means of three good obfervations, the diameter of Venus on the Sun was \(58^{\prime \prime}\).

Mr. Short made his obfervations at Savile-Houfe in London, 30 feconds in time welt from Greenwich, in prefence of his Royal Highnefs the Duke of York, accompanied by their Royal Highneffes Prince William, Prince Henry, and Prince Frederick.-He firt faw Venus on the Sun, through flying clouds, at 46 minutes 37 feconds after 50 'clock; and at 6 hours 15 minutes 12 feconds he meafured the diameter of Venus \(59^{\prime \prime} .8\). - He afterward found it to be \(58^{\prime \prime} .9\) when the fky was more favourable.And, through a reflecting telefcope of two feet focus, magnifying 140 times, he found the internal contact of Venus with the Sun's limb to be at 8 hours 18 minutes \(21 \frac{1}{2}\) feconds, apparent time ; which, being reduced to the apparent time at Greenwich, was 8 hours 18 minutes \(51 \frac{1}{2}\) feconds: fo that his time of feeing the contact was \(8 \frac{1}{2}\) feconds fooner (in abfolute time) than the inftant of its being feen at Greenwich.

Meffrs. Ellicott and Dolond oblerved the internal contact at Hackney, and their time of feeing it, reduced to the time at Greenwich, was at 8 hours 18 minutes 36 feconds, which was 4 feconds fooner in abfolute time than the contact was feen at Greenwich.

Mr. Canton, in Spittle-fquare, London, \(4^{\prime} \mathrm{II}^{\prime \prime}\) weft of Greenwich (equal to 16 feconds 44 thirds of time), meafured the Sun's diameter \(3{ }^{\prime \prime} 33^{\prime \prime} 24^{\prime \prime \prime}\), and the diameter of Venus on the Sun \(53^{\prime \prime}\); and by obfervation found the apparent time of the internal contact of Venus with the Sun's limb to be at 8 hours 18 minutes 41 feconds; which, by reduction, was only \(2 \frac{1}{4}\) feconds fhort of the time at the Royal Obfervatory at Greenzich.

The Reverend Mr. Ricbard Haydon, at Lefkeard, in Cornwall, (16 minutes 10 feconds in time weft from London, as ftated by Dr, Bevis,) obferved the internal contact to be at 8 hours 0 minutes 20 feconds, which by reduction was 8 hours 16 minutes 30 feconds at Greenwicb: fo that he mult have feen K k
it 2 minutes 30 feconds fooner in abfolute time than it was feen at Greenwich-a difference by much too great to be occafioned by the difference of parallaxes. But by a memorandum of Mr . Haydon's fome years before, it appears that he then fuppofed his welt longitude to be near two minutes more; which brings his time to agree within half a minute of the time at Greenwich; to which the parallaxes will very nearly anfwer.

At Stockbolm Obfervatory, latitude \(59^{\circ} 20^{\frac{1^{\prime}}{2}}\) north, and longitude I hour 12 ,minutes ealt.from Greenwich, the whole of the tranfit was vifible; the total ingrefs was obferved by Mr. Wargentin to be at 3 hours 39 minutes 23 feconds in the morning, and the beginning of egrefs at o hours 30 minutes 8 feconds; fo: that the whole duration between the two internal contacts, as feen at that place, was 5 hours 50 minutes 45 feconds.

At Torneo in Lopland (1 hour 27 minutes 28 feconds eall of Paris) Mr. Hellont, who is efteemed a very good obferver, found the total ingrefs to be at 4 hours 3 minutes 59 feconds; and the beginning of egrefs to be 9 hours 54 minutes 8 feconds. -So that the whole duration between the two internal contacts was 5 hours 50 minutes 9 feconds.

At Hernofand, in Sweden (Jatitude \(60^{\circ} 38^{\prime}\) north, and longitude 1 hour 2 minutes 12 feconds eaft of Paris), Mr. Gifter obferved the total ingrefs to be at 3 hours 38 minutes 26 feconds; and the beginning of egrefs to be at 9 hours 20 minutes 21 feconds. - The duration between thefe two internal contacts 5 hours 50 minutes 56 feconds.

Mr. De la Lande, at Paris, obferved the beginning of egiefs to be at 8 hours 28 minutes 26 feconds apparent time-But Mr. Fermer (who was then at Comftans, \(14 \frac{1}{2}{ }^{\prime \prime}\) weft of the Royal Obfervatory at Paris) obferved the beginning of egrefs to be at 8 hours 28 minutes 29 leconds true time. The equation, or difference between the true and apparent
apparent time, was 1 minute 54 feconds. -The total ingrefs, being before the Sun rofe, could not be feen.

At Tobol/k, in Siberia, Mr. Cbappe obferved the total ingrefs to be at 7 hours o minutes 28 feconds in the morning, and the beginning of egrefs to be at 49 minutes \(20 \frac{1}{2}\) feconds after 12 at noon. - So that the whole duration of the tranfit between the internal contacts was 5 hours 48 minutes \(52 \frac{1}{2}\) feconds, as feen at that piace; which was 2 minutes \(3^{\frac{1}{2}}\) feconds lefs than as feen at Hernofand in Sweden.

At Madrafs, the Reverend Mr. Hirft oblerved the total ingrefs to be at 7 hours 47 minutes 55 feconds apparent time in the morning; and the beginning of egrefs at I hour 39 minutes 38 feconds paft noon.- The duration between thefe two internal contacts was 5 hours 5 I minutes 43 feconds.

Profeffor Mathenci, at Bologna, obferved the beginning of egrefs to be at 9 hours 4 minutes 58 feconds.

At Calcutta (latitude \(22^{\circ} 30^{\prime}\) north, nearly \(92^{\circ}\) eaft longitude from London) Mr. William Magee obferved the total ingrefs to be at 8 hours 20 minutes 58 feconds in the morning, and the beginning of egrefs to be at 2 hours II minutes 34 feconds in the afternoon. Theduration between the two internal contacts 5 hours 50 minutes 36 feconds.

At the Cape of Good Hope (I hour I 3 minutes 35 feconds eaft from Greenwich) Mr. Mafon obferved the beginning of egrefs to be at \(g\) hours 39 minutes 50 feconds in the morning.

All thefe times are collected from the obferver's accounts, printed in the Philofophical Tranfactions for the year 1762 and 1763 , in which there are feveral other accounts that I have not tranferibed. -The inftants of Venus's total exit from the Sun are likewife mentioned; but they are here left out, as not of any ufe for finding the Sun's parallax.
Whoever compares thefe times of the internal contaहts, as givenin by differentobfervers, will find \(\mathrm{Kk}_{2}\) fuch
fuch difference among them, even thofe which were taken upon the fame fot, as will fhew, that the inftant of either contact could not be fo accurately perceived by the obfervers as Dr. Halley thought it could; which probably arifes from the difference of people's eyes, and the different magnifying powers of thofe telefcopes through which the contacts were feen.-If all the obfervers had made ufe of equal magnifying powers, there can be no doubt but that the times would have more nearly coincided; fince it is plain, that fuppofing all their eyes to be equally quick and good, they whofe telefcopes magnified moft, would perceive the point of internal contact fooneft, and of the total exit latef.

Mr. Sbort has taken an incredible deal of pains in deducing the quantity of the Sun's parallax, from the beft of thofe obfervations which were made both in Britain and abroad: and finds it to have been \(8^{\prime \prime} .52\) on the day of the tranfit, when the Sun was very nearly at his greateft diftance from the Earth; and confequently \(8^{\prime \prime} 65\) when the Sun is at his mean diftance from the Earth.-And indeed, it would be very well worth every curious perfon's while, to purchafe the fecond part of Volume LII. of the Philofophical Tranfactions, for the year 1763 ; even if it contained nothing more than Mr. Short's paper on that fubject.

The log. fine (or tangent) of \(8^{\prime \prime} .65\) is 5.6219140 , which being fubtracted from the radius 10.0000000 , leaves remaining the logarithm 4.3780860 , whofe number is 23882.84 ; which is the number of femidiameters of the Earth that the Sun is diftant from it.-And this laft number, \(2 ; 382.84\), being multiplied by 3985 , the number of Englifh miles contained in the Earth's femidiameter, gives \(95,173,127\) miles for the Earth's mean diftance from the Sun.- But becaufe it is impofible, from the niceft obfervations of the Sun's parallax, to be fure of its true diftance from the Earth within 100
miles, we fhall at prefent, for the fake of round numbers, fate the Earth's mean diftance from the Sun at 95, 173,000 Engli/h miles.

And then, from the numbers and ànalogies in § is and 14 of this Differtation, we find the mean diftances of all the reft of the planets from the Sun in miles to be as follows:-Mercury's diftance, \(36,84 \mathrm{I}, 468\); Venus's diftance, \(68,891,486\); Mars's diftance, \(145,014,148\); Jupiter's diftance, 494,990, 576 ; and Saturn's diftance, \(907,956,130\).

So that by comparing thefe diftances with thofe in the Tables at the end of the chapter on the Solar Syftem *, it will be found that the dimenfions of the Syftem are much greater than what was formerly imagined: and confequently, that the Sun and all the planets (except the Earth) are much larger than as ftated in that table.

The femidiameter of the Earth's annual orbit being equal to the Earth's mean diftance from the Sun, viz. \(95,173,000\) miles, the whole diameter is \(190,346,000\) miles. And fince the diameter of a circle is to its circumference as I to 3.14159 the circumference of the Earth's orbit is \(597,989,090\) miles.

And, as the Earth defcribes this orbit in 365 days 6 hours (or in 8766 hours), it is plain that it travels at the rate of 68,217 miles every hour, and confequently 11,369 miles every minute; fo that its velocity in its orbit is at leaft 142 times as great as the velocity of a cannon-ball, fuppofing the ball to move through 8 miles in a minute, which it is found to do very nearly :-and at this rate it would take 22 years 228 days for a cannonball to go from the Earth to the Sun.

On the 3 d of 7 fune, in the year 1769 , Venus will again pafs over the Sun's difc, in fuch a manner, as to afford a much eafier and better method of inveftigating the Sun's parallax than her tranfit
in the year 1761 has done.-But no part of Britain will be proper for obferving that tranfit, fo as to deduce any thing with refpect to the Sun's parallax from it, becaufe it will begin but a little before fun-fet, and will be quite over before 20 'clock next morning. - The apparent time of conjunction of the Sun and Venus, according to Dr. Halley's Tables, will be at 13 minutes palt 10 o'clock at night at London; at which time the geocentric latitude of Venus will be full :o minutes of a degree north from the Sun's center:--and therefore, as feen from the northern parts of the Earth, Venus will be confiderably depreffed by a parallax of latitude on the Sun's difc; on which account, the vifible duration of the tranfit will be lengthened; and in the fouthern parts of the Earth fhe will be elevated by a parallax of latitude on the Sur, which will fhorten the vifible duration of the tranfit, with refpect to its duration as fuppofed to be feen from the Earth's center ; to both which affections of duration the parallaxes of longitude will alfo confpire.-So that every advantage which Dr. Halley expected from the late tranfit will be found in this, without the leaft difficulty or embarraffment. - It is therefore to be hoped, that neither coft nor labour will be fpared in duly obferving this tranfit; efpecially as there will not be fuch another opportunity again in lefs than 105 years afterward.

The moft proper places for obferving the tranfit in the year 1769, is in the northern parts of Lapland, and the Solomon Ifles in the great South-Sea; at the former of which, the vifible duration between the two internal contacts will be at leaft 22 minutes greater than at the latter, even though the Sun's parallax foould not be quite \(9^{\prime \prime}\).- If it be \(9^{\prime \prime}\). (which is the quantity I had affumed in a delineation of this tranfit, which I gave in to the Royal

Royal Society before I had heard what Mr. Sbort had made it from the obfervations on the late tranfit), the difference of the vifible durations, as feen in Lapland and in the Solomon Iles, will be as expreffed in that delineation; and if the Sun's parallax be lefs than \(9^{\prime \prime}\) (as I now have very good reafon to believe it is), the difference of durations will be lefs accordingly.
\(\mathrm{Kk}_{4} \quad 1 \mathrm{NDEX}\).

\section*{I \(\quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{X}\).}

The numeral Figures refer to the Articles, and the fmall \(n\) to the Notes on the Articles.

\section*{A}

ACELERATION of the Stars, 221 . Angle, what, 185, \(n\).
Annual Parallax of the Stars, 196.
Anomaly, what, 239 .
Antients, their fuperfitious notions of Eclipfes, 329.
Their method of dividing the Zodiac, \(3^{61}\).
Antipodes, what, 122.
Apfides, line of, 238.
Archimedes, his, ideal problem for moving the Earth, 159.

Areas, defcribed by the Planets, proportional to the times, 153.

Afronomy, the great advantages arifing from it both in our religious and civil concerns, 1.
Difcovers the laws by which the Planets move, and are retained in their Orbits, 2.
Atmo/phere, the higher the thinner, 174.
Its prodigious expanfion, ibid.
Its whole weight on the Earth, 175.
Generally thought to be heavieft when it is lighteft, 176.

Without it, the Heavens would appear dark in the daytime, 177.
Is the caufe of Twilight, ibid.
Its height, ibid.
Refracts the Sun's rays, 178.
Caufeth the Sun and Moon to appear above the Horizon when they are really below it, ibid.
Foggy, deceives us, in the bulk and diftance of objects, 185.

Altraction, 105-10\%.
Decreafes as the fquare of the diffance increafes, 106.
Greater in the larger than in the fmaller Planets, 158.
Greater in the Sun, than in all the Planets if put \(10-\) gether, ibid.

\section*{I N D E X.}

Axis of the Planets, what, 19.
Their different pofitions with refpect to one another, 120.

Axis of the Earth, its Parallelifm, 202.
Its pofition variable as feen from the Sun or Moon, 338. the Phenomena thence arifing, 340 .

\section*{B.}

Bodics, on the Earth, lofe of their weight the nearer they are to the Equator, 117.
How they might lofe all their weight, 118. How they become vifible, 167 .

\section*{C.}

Calculator (an Infrument) defcribed, 399.
Calendar, how to infribe the Gulden Numbers right in it for thewing the days of New Moons, 386.
Cannon-Bail, its fwifners, 89.
In what times it would fly from the Sun to the different Planets and fixed Stars, ibid.
Cassini, his account of a double Star eclipfed by the Moon, 58.
His Diagrams of the Paths of the Planets; 138.
Catalogue of the Eclipfes, 327.
Of the Conftellations and Stars, 352 .
Of remarkable Æras and Events, 395.
Celeftial Globe improved, 40 I.
Centripetal and centrifugal forces, how they alternately overcome each other in the motions of the Planets, 152-154.
Changes in the Heavens, 366.
Circles, of perpetual Apparition and Occultation, 128.
Of the Sphere, 198.
Contain 360 Degrees, whecher they be great or fmall, 207.

Civil Year, what, 474.
COLumbus (Christopher) his fory concerning an ' Eclipre, 330.
Clocks and Warches, an eafy mecthod of knowing whether they go true or falfe, 223.
Why they feldom agree with the Sun if they go true, \(228-2+5\).

\section*{I N D E X.}

Cloiks and Warbes, how to regulate them by Equation
Tables and a Meridian Line, 225, 226.
Cloudy Stars, 365.
Cometarium (an Inftrument) defcribed, 400 . Confellations, ancient, their number, 359.

The number of Stars in each, according to different Aftronomers, 362 .
Cycle, Solar, Lunar, and Romifh, 383 .

\section*{D.}

Darkness at our Saviour's crucifixion fupernatural, 395. Day, natural and artificial, what, 380 .

And Night, always equally long at the Equator, 126. Natural, not compleated in all abfolute turn of the

Earth on its Axis, 222.
Degree, what, 207.
Digit, what, 336, \(n\).
Direction, (Number of) 38 g .
Diffances of the Planets from the Sun, an Idea of them, 89.
A Table of them, 98.
How found, Ico; and in the Differtation on the Tranfit of Venus, Chap. XXIII.
Diurnal and annual Motions of the Earth illuftrated, 200, 202.

Dominical Letter, 309.
Double projictile force, a balance to a शuadruple power of Gravity, 153.
Doubic Star covered by the Moon, \(5^{8}\).

\section*{E.}

Earth, its Bulk but a point as feen from the Sun, 3.
Its Diameter, annual period, and diftance from the Sun, 47.

Turns round its Axis, ibid.
Velacity of its equatorial Parts, ibid.
Velocity in its annual Orbit, ibid.
Inclination of its Axis, 48 .
Proof of its being globular, or nearly \(\{0,49,314\).
Meafurement of iss furface, 50, 51.
Difference between its equatorial and polar diameters, 76.

Its motion round the Sun demonfrated by gravity, 108,

\section*{I N D E X.}

108, III, by Dr. Bradley's obfervations, 113 ; by the Eclipfes of Jupiter's Satellites, 2 : 90
Earth, its diurnal motion highly probable from the abfurdity that muft follow upon fuppofing it not to move, 111, 122. and demonftrable from its figure, 116. this motion cannot be felt, 119.

Objections againft its motion anfwered, 112, 121.
It has no fuch thing as an upper or an under fide, 122 d in what cafe it might, 123.
The fwiftnefs of its motion in its Orbit compared with the velocity of light, 197.
Its diurnal and annual motions illuftrated by an eafy experiment, 200.
Proved to be lefs than the Sun, and bigger than the Moon, 315.
Eafter Cycle, 388.
Eclipfareon (an Inftrument) defcribed, 405 .
Eclipfes of Jupiter's Satellites, how the Longitude is found by them, 212. they demonftrate the velocity of light, 216.

Of the Sun and Moon, 3i2-350.
Why they happen not in every month, 316.
When they muft be, 317 .
Their Limits, ibid.
Their Period, 320.
A differtation on their progrefs, ibid.
A large Catalogue of them, 327.
Hiftorical ones, 328.
More of the Sun than of the Moon, and why, 33 t .
The proper Elements for their calculation and projec* tion, 353.
Ecliptic, its figns, their names and characters, 9 I .
Makes different angles with the Horizon every hour and minute, 275 . how thefe Argles may be effimated by the pofition of the Moon's horns, 260.
Its obliquity to the Equator lefs now than it was formerly, 368.
Elongations, of the Planets, as feen by an Obferver at reft on the outfide of all their Orbits, 133 .
Of Mercury and Venus, as feen from the Earth, illuftrated, 142 . its quantity, \(143^{\circ}\)
Of Mercury, Venus, the Earth, Mars, and Jupiter; their quantities, as feen from Saturn, 147.
Equation of time, 224-245.
Equator, day and night always equal there, 126.

\section*{I N D E X:}

Equator makes always the fame Angle with the Horizon of the fame place ; the Ecliptic not, 274, 275.
Equinoctial Points, in the Heavens, their preceffion, 246. a very different thing from the receffion or anticipation of the Equinoxes on the Earth, the one no ways occafioned by the other, 249 .
Æras or Epochs, 396.
Excentricities of the Planets' Orbits, 155 ,

\section*{F}

Fallacies in judging of the bulk of objects by their apparent diffance, 185 . applied to the folution of the horizontal Moon, 187.
Firft Meridian, what, 207.
Fixed Stars, why they appear of lefs magnitude when viewed through a telefcope than by the bare eye, 354 -
Their number, 355 .
Their divifion into different Claffes and Conftellations, 358, 359.

\section*{G.}

General Pbenomena of a fuperior Planet as feen from an inferior, 149.
Georgium Sidus, its diftance, diameter, magnitude, annual revolution, 84, \(n\).
Not readily diftinguifhed from a fixed Star, ibid.
Inclination of its orbit, ibid.
Place of its Nodes, ibid.
Its Satellites, their diftance, periods, and remarkable pofition of their orbits, ibid.
Gravity, demonftrable, 101 -104.
Keeps all bodies on the Earth to its furface, or brings them back when thrown upward; and conftitutes their weight, \(101,122\).
Retains all the Planets in their Orbits, 103.
Decreafes as the fquare of the diftance increales, 106.
Proves the Earth's annual motion, 108.
Demonftrated to be greater in the larger Planets than in the fmaller; and ftronger in the Sun than in all the Planets together, 158.
Hard to underftand what it is, 160 .
Acts every moment, 162.
I N D E X,

Globe (Celeftial), improved, 40 I .
Great Year, 25 I.

\section*{H.}

Harmony of the celeftial motions, III. Harvef-Moon, 273-293.

None at the Equator, 273. Remarkable at the Polar Circles, 285. In what years moft and lefs advantageous, 292.
Heat, decreafes as the fquare of the diftance from the Sun increales, 160.
Why not greateft when the Earth is neareft the Sun, 205.

Why greater about three o'clock in the afternoon than when the Sun is on the Meridian, 300.
Heavens, feem to turn round with different velocities as feen from the different Planets; and on different Axes as feen from moft of them, 120.
Only one Hemifphere of them feen at once from any one Plant's furface, 125.
The Sun's Center the only point from which their true motions could be feen, 135 .
Changes in them, 366 .
Horizon, what, 125, \(n\).
Horizontal Moon explained, 187.
Horizontal Parallax, of the Moon, rgo; of the Sun, 191; beft obferved at the Equator, 193.
Hour Circles, what, 208.
Hour of time equal to 15 degrees of motion, ibid.
How divided by the Fews, Chaldenns, and Arabians, 382.

HUygenius, his thoughts concerning the diftance of fome Stars, 5.
I.

Inclination of Venus's Axis, 29.
()f the Earth's, 48.

Of the Axis or Orbit of a Planet only relative, 201.
Iulabitants of the Earth (or any other Planet) ftand on oppofite fides with their feet toward one another, yet each thinks himfelf on the upper fide, 122 .
\[
\text { J. } \mathscr{Y u}_{u-}
\]

\section*{\(1 \mathrm{~N} D \mathrm{E}\).}

\section*{J.}

Fulian Period, 393.
Fupiter, its diftance, diameter, diurnal and annual revoJutions, 67-69.
The Phenomena of its belts, 70 .
Has no difference of feafons, 71 .
Has four Moons, \(i^{2}\). their grand Period, 73. the Angles which their Orbits fubtend, as feen from the Earth, 74. moft of them are eclipfed in every revolution, 75 .
fupiter, the great difference between its equatorial and polar diameters, 76 .
The inclination of its Orbit, and place of its Afcending Node, 77.
The Sun's light 3000 times as ftrong on it as Full Moon light is on the Earth, 85.
Is probably inhabited, 86.
The amazing ftrength required to put it in motion, 158.

The figures of the Paths defcribed by its Satellites, 26 g .

\section*{L.}

Light, the inconceivable fmallnefs of its particles, 165 : and the great mifchief they would do if they were larger, 166.
Its furprifing velocity, 166 . compared with the fwiftnefs of the Earth's annual motion, 197.
Decreafes as the fquare of the diftance from the luminou; body increafes, \(16 y\).
Is refracted in paffing through different Mediums, 171-173.
Affords a proof of the Earth's annual motion, 197, 219.

In what time it comes from the Sun to the Earth, 216; this explained by a figure, 217 .
Limits of Eclipres, 317.
Line, of the Nodes, what, 317 ; has a retrograde motion, 319.
Of Sines and Chords, how to make, 369 .
Lono (Rev. Dr.) his method of comparing the quancity of the furface of dry Land with that of the Sea, 5 I .

\section*{I N D E X.}

Long, his glafs fphere, 126.
Longitude, how found, 207-213.
Luitid Spots in the Heavens, \(364{ }^{\circ}\)
Lunar Gycle deficient, 385.

\section*{M.}

Magellanic Clouds, 355.
Man, of a middle fize, how much preffed by the weight of the Atmofphere, 175 ; why this preffure is not felt, ibid.
Mars, its Diameter, Period, Diftance, and other Phenomena, 64-67.
Matter, its properties, 99.
Mean Anomaly, what, 239 .
Mercury, its Diameter, Period, Diftance, שoc. 22.
Appears in all the fhapes of the Moon, 23.
When it will be feen on the Sun, 24 .
The inclination of its Orbit and Place of its Afcending Node, ibid.
Its Path delineated, 138.
Experiment to thew its Phafes, and apparent Motion, 142.

Mercury (Quickfilver) in the Barometer, why not affected by the Moon's raifing Tides in the Air, 3 II.
Meridian, firf, 207.
Line, how to draw one, 226.
Milky Way, what, 363 .
Months, Fewifh, Arabian, Egyptian, and Grecian, \(37^{8}\).
Moon, her Diameter and Period, 52.
Her Phafes, 53, 255.
Shines not by her own light, 54 .
Has no difference of feaions, \(55^{\circ}\)
The Earth is a moon to her, 56 .
Has no Atmofphere of any vifible Denfity, \(5^{8}\); nor Seas, 59.
How her inhabitants may be fuppofed to meafure their year, 62.
Her light compared with daylight, 85 .
The eccentricity of her Orbit, 98 .
Is nearer the Earth now than the was formerly, 163.
Appears bigger on the Horizon than at any confiderable height above it, and why, 187 , yet is feen much under the fame Angle in both cafes, 188.

\section*{I N D E X.}

Her furface mountainous, 252 : if fmooth, he could give us no light, ibid.
Why no hills appear round her edge, 253 .
Has no Twilight, 254.
Appears not always quite round when full, 256 .
Her Phafes agreeably reprefented by a globular Stone viewed in Sunfline when fhe is above the Horizon, and the obferver placed as if he faw her on the top of the Stinne, 258 .
Turns round her Axis, 262.
The length of her zolar and Sydereal day, ibid.
Her periodica! and fynodical revolution seprefented by the motions of the hour and minute hands of a Watch, 264 .
Her Path delineated, and fhewn to be always concave tn the Sun, \(265-268\).
Her motion alternately retarded and accelerated, 267.
Her gravity toward the Sun greater than toward the Earth at her Conjunction, and why the does not then abandon the Earth on that account, 268.
Rifes nearer the time of Sun-fet when about the full in harveft fur a whole week than when the is about the full at any other time of the year, and why, 273-284 : this rifing goes through a courfe of increafing and decreafing benefit to the farmers every 19 years, 292.
Continues above the Horizon of the Poles for fourteen of our natural days together, 293.
Proved to be globular, 314 ; and to be lefs than the Earth, 315.
Her Nodes, 317; afcending and defcending, 18; their retrograde motion, \(3^{19}\).
Her acceleration proved from ancient Ecliples, 322, \(n\).
Her Aprgee and Perigee, 336.
Nor invifible when the is totally eclipfed, and why, 346.
How to calculate her Conjunctions, Oppolitions, and Eclipfes, 353.
How to find her age in any Lunation by the Golden Numbier, 423.
Morning and Evening Star, what, \(145 \cdot\)
Motion, naturally rectilineal, 100.
Apparent, of the Planets as feen by a fpectator at reft on the outfide of all their Orbits, 133 ; and of the Heavens as feen from any Planet, 154 .

N .
Natural Day, not completed in the time that the Earth turns round its Axis, 222.
Nezw and Full Moon, to calculate the times of, 353 .
New Stars, 366 ; cannot be Comets, 367.
New Stile, its original, 377.
Nodes of the Plauets Orbits, their places in the Ecliptic, 20.
Of the Moon's Orbit, 317 ; their retrograde motion 319.

Nonagefinal Degree, what, 259.
Numler of Direction, 389.

\section*{O.}

Objects, we often miftake their bulk by miftaking their diffance, 185.
Appear bigger when feen through a fog than through clear air, and why, ibid. this applied to the folution of the horizontal Moon, 187.
Oblique Sphere, what, 13 r.
Olympiads, what, 323. \(n\).
Orbits of the Planess not folid, 2 I.
Orreries defcribed, 397, 398, 399.
P.

Parallax, Horizontal, what, 190.
Parallel Sphere, what, 13 I .
Path of the Moon, 265-267.
Of Jupiter's Moons, 269.
Pendulums, their vibrating flower at the Equator than near the Poles proves that the Earth turns on its Axis, 117.
Penumbra, what, 336 .
Its velocity on the Earth in Solar Eclipfes, 337.
Period of Eclipjes, \(320,326\).
Pbafes of the Moon, 255 .
Plansts, much of the fame nature with the Earth, II.
Some have Moons belonging to them, 12 .
Move all the fame way as feen from the Sun, but no: as feen from one another, 18.
Their Moons denore them to be inhabitcd, 85 .

\section*{1 N D E X.}

Plamets, the proportional breadth of the Sun's dife, as feen from each of them, 87 .
Their proportional bulks as feen from the Sun, 88.
An idea of their diftances from the Sun, 89 .
Appear bigger and lefs by turns, and why, 90.
Are kept in their Orbits by the power of gravity, IoI, 150-158.
Their motions very irregular as feen from the Earth, 137.

The apparent motions of Mercury and Venus delineated by Pencils in an Orrery, 138.
Elongations of all the reft as feen from Saturn, 147.
Defcribc equal areas in equal times, 153.
The excentricities of their Orbits, 155 -
In what times they would fall to the Sun by the power of gravity, 157.
Difturb one another's motions, the confequence of it, 163 .
Appear dimmer when feen through telefcopes than by the bare eye, the reafon of this, 17 c .
Planetary Globe defcribed, 402.
Polar Circles, 198.
Poles, of the Planets, what, 19.
Of the world, what, I 22.
Celeflial, feem to keep in the fame points of the Heavens all the year, and why, r 95 .
Projectile Force, \(\mathrm{I}_{50}\); if doubled, would require a quadruple power of gravity to retain the Planets in their Orbits, 153.
Is evidently an impulfe from the hand of the AL. michty, 16 i.
Precrfion of the Equinoxes, 246-251.
Piclemean Sy flem ablurd, 96, I 40 .

\section*{R.}

Rays of Light, when not diflurbed, move in ftraight lines, and hinder not one another's motions, 168.
Are refracled in pafing through different mediums, 17 I. Reffcction of the Atmofphere, caufes the Twilight, 177 . Refratlion of the Atmofphere bends the Rays of Light from fraight lines, and keeps the Sun and Moon longer in fight than they would otherwife be, 178 .
A furprifing inflance of this, 183.

\section*{I N D E X.}

Refraction of the Atmofphere muft be allowed for in taking the Altitudes of the celeftial bodies, ibid.
Right Sphere, 131.

\section*{S.}

Satcllites, the times of their revolutions round their primary Planets, \(52,73,80\).
Their Orbits compared with each other, with the Orbits of the primary Planets, and with the Sun's circumference, 271 .
What fort of curves they defcribe, 272.
Saturn, with his Ring and Moons, their Phænomena, 78, 79, 82.
The Sun's light 1000 times as ftrong to \(S\) aturn as the light of the Full Moon is 10 us, 85 .
The Birenomena of his Ring farther explained, 204.
Our blefed Saviour, the darknefs at his Crucifixion fupernatural, 352 .
The prophetic year of his Crucifixion found to agree with an alfronomical calculation, 395 .
Sea,ons, differenr, illuftrated by an eafy experiment, 200; by a figure, 202.
Shadow, what, 312.
S, dercal Time, what, 22 I ; the number of Sydereal Days in a year exceeds the number of Solar Days by one, and why, 222.
An eaiy method for regulating Clocks and \(W\) atches by if, 223.
Smith, (Rcv. Dr.) his comparifon between Moon-light and day-light, 85 .
His demonftration that light decreafes as the fquare of the diffance from the luminous body increafes, \(I 6 g\).
(Mr. George) his Differtation on the Progrefs of a caLar Eiclipfe; following the Tables at 320 .
Solar fifironomisr, the judgement he might be fuppofed so make concerning the Planets and Stars, I 35, 135.
Splocre, parallel, ublique, and right, I 3 I.
Its Circles, 198.
Spring and Neay Tides, 302.
Stars, their vait diftance fiom the Earth, \(3, \times 56\).
Probabiy not ail at the fame diftance, 4 .
Sh:ne by their nwn light, and are tharefore Suns, \(7 \cdot\) probably to other kohld?, 8.

\section*{I N D E X.}

Stars, a proof that they do not move round the Earth, 1 I r. Have an apparent flow motion round the Poles of the Ecliptic, and why, 251.
A Catalogue of them, 362.
Cloudy, \(3^{6} 5\).
New, 366.
Some of them change their places, 367 .
Starry Heavens have the fame appearance from any part of the Solar Syftem, 132 .
Sun, appears bigger than the Stars, and why, 4.
Turns round his Axis, 18.
His proportional breadth as feen from the different Planets, 87.
Defcribes unequal arcs above and below the Horizon at different times, and why, 30.
His center the only place from which the true motions of the Planets could be feen, 135 .
Is for half a year together vifible at each Pole in its turn, and as long invifible, 200, 294.
Is nearer the Earth in Winter than in Summer, 205.
Why his motion agrees fo feldom with the motion of a well-regulated Clock, 224-245.
Would more than fill the Moon's Orbit, 271.
Proved to be much bigger than the Earth, and the Earth to be bigger than the Moon, 315 .
Sylems, the Solar, 17-95; the Ptolemean, \(9^{6}\); the
Tychonic, 97.

\section*{T.}

Table of the Periods, Revolutions, Magnitudes, Diftances, \(\mathcal{E}^{\circ} c\). of the Planers, facing \(§ 98\).
Of the Air's rarity, comprefion, and expanfion, at different heights, 174.
Of refrations, 182 .
For converting time into motion, and the reverfe, 220.
For thewing how much of the celeftial Equator paffes over the Meridian in any part of a mean Solar Day; and how much the flars accelerate upon the mean Solar tinue for a month, 221 .
Of the firlt part of the Equation of time, 229; of the fecond part, \(24,1\).
Of the preceffion of the Equinnxes, \(2+7\).
()f the length of Sydercal, Julian, and I'repical Years, 251.

\section*{I N D E X.}

Of the Sun's place and Anomaly,
\(\left.\begin{array}{l}\text { Of the Equation of Natural Days, } \\ \text { Of the Equation of Time, }\end{array}\right\}\) following 25 I .
Of the Conjunctions of the hour and minute hands of a Watch, 264.
Of the Curves defcribed by the Satellites, 272.
Of the difference of Time in the Moon's rifing and fetting on the parailel of London every day during her courfe round the Ecliptic, 277.
Of the returns of a Solar Eclipfe, 320.
Of Eclipfes, 327.
For calculating New and Full Moons and Eclipres, following 353.
Of the Confteilations and number of Stars, 352.
Of the 7ewijh, Egyptian, Arabic, and Grecian months, 379.
For inferting the Golden Numbers right in the Calendar, 386.
Of the times of all the New Moons for 76 Years, 387 .
Of remarkable \(\mathbb{Z}\) ras or Events, 396.
Of the Golden Number, Number of Direction, Dominical Letter, and Days of the Months, following 396.

Thales's Eclipfe, 323.
Thucydides's Eclipfe, 324.
Tides, their Caufe and Phenomiena, 295-3II.
Tide-Dial defcribed, 404.
Irajeciorium Lunare defcribed, 403.
Tropics, 198.
Twilight, none in the Moon, 2.54 .
Tycbonic Syfem abfurd, 97.

น.
Univerfe, the Work of Almighty Power, 5, 16r.
Up and down, only relative terms, 122.
Upper or under Fide of the Eartit, no fuch thing, 123.
V.

Velocity of Light compared with the velocity of the Earth in its annual Orbit, 197.
Venus, her bulk, diftance, period, length of days and nights, 26.

\section*{I N D E X}

Venus thines not by her own light, 26.
Is our morning and evening Star, 28.
Her Axis, how fituated, 29.
Her furprifing phenomena, 29-43.
The inclination of her Orbit, 45 .
When the will be feen on the Sun, ibid.
How it may probably be foon known if the has a Satellite, 46.
Appears in all the fhapes of the Moon, 23, 141 .
An experiment to fhew her Phafes and apparent Motion, 141.
Vifion, how cauled, 167 .
W.

Weather, not hotteft when the Sun is neareft to us, and why, 205.
Weight, the caufe of it, 122.
World, not eternal, 164.
Y.

Year, 370. Great, 251. Tropical, 371. Sydereal, 372. Lunar, 373. Civil, 374. Biffextile, ibid. Roman, 376. Fewif, Egyptian, Arabic, and Grecian, 378, 379; how long it would be if the Sun moved round the Earth, III.

\section*{Z.}

Zsdiac, what, 360.
How divided by the ancients, 36 r .
Zones, what, 199.

\section*{DIRECTIONS to the PLATES.}

The Orrery Plate fronting the Title Page.

FIN I S.```

[^0]: * Dr. Young's Night Thoughts.

[^1]: - If the two ends of a thread be tied together, and the thread be then thrown loofely round two pins fuck in a table,

[^2]: * In the year 1790.

[^3]: * A Degree is a 360 th part of any Circle. See $\$ 21$.
 + The limit of any inhabitant's view, where the Sky feems to touch the Planet all round him.

[^4]: *atellieth her tranfits are over fince this was written, and no Satellite was feen with Venus on the Sun's Difc.

[^5]: *The Moon's Orbit crofes the I:cliptic in two oppofi:e points, called the Muon's Nodes; fo that one half of her Orbit is above the Ecliptic, and the other half below it. 'The Angle of its Obliquity is 5 : degrese,

[^6]: * Optics, Art. 9j.

